利用数量性状和 SSR 标记分析 Oryza sativa L. 基因型的遗传变异性和多样性

IF 4.4 2区 生物学 Q1 Agricultural and Biological Sciences Saudi Journal of Biological Sciences Pub Date : 2024-01-28 DOI:10.1016/j.sjbs.2024.103944
Adel A. Rezk , Heba I. Mohamed , Hossam S. El-Beltagi
{"title":"利用数量性状和 SSR 标记分析 Oryza sativa L. 基因型的遗传变异性和多样性","authors":"Adel A. Rezk ,&nbsp;Heba I. Mohamed ,&nbsp;Hossam S. El-Beltagi","doi":"10.1016/j.sjbs.2024.103944","DOIUrl":null,"url":null,"abstract":"<div><p>The present study was aimed at evaluating the genetic variation and population structure in a collection of 22 rice genotypes. Twenty-two rice genotypes were assessed using quantitative traits and SSR molecular markers for genetic variability and genetic diversity. As for genetic diversity, the genotypes were clarified based on twelve quantitative traits. Clustering produced two large groups: the IR70423-169-2-2 variety was in a branch alone due to its long duration, while, the second group included all rest of genotypes and was split up into two sub-groups. The first sub-group included IR67418-131-2-3-3-3, IR67420-206-3-1-3-3, Giza181, Giza182, Sakha104, and P1044-86-5-3-3-2M. However, pedigree played in divided clustering with Giza181 and Giza182, which were belonging to the Indica type and produced from the same parents. SSR markers produced 87 alleles, with a mean of 4.3 alleles per locus, which were detected in 22 rice genotypes. A higher number of alleles were found with primers RM262, RM244, RM3843, RM212, and RM3330. With an overall mean of 0.837, the polymorphic information content values were high for all SSR markers, ranging from a low of 0.397 for M254 to a high of 0.837 for RM244. The dendogram was divided into six groups according to the types of genotypes, with the pedigree playing a major role for the genetic distance. In order to help breeders choose parents and create suitable hybrids to achieve genetic improvement in crops, particularly rice, SSR is a useful technique for analysing genotype diversity and aiding in the genetic fingerprinting of each variety.</p></div>","PeriodicalId":21540,"journal":{"name":"Saudi Journal of Biological Sciences","volume":"31 3","pages":"Article 103944"},"PeriodicalIF":4.4000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319562X24000226/pdfft?md5=7cfe419e3caf07c3e6e7f30fdc5bbc06&pid=1-s2.0-S1319562X24000226-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Genetic variability and diversity analysis in Oryza sativa L. genotypes using quantitative traits and SSR markers\",\"authors\":\"Adel A. Rezk ,&nbsp;Heba I. Mohamed ,&nbsp;Hossam S. El-Beltagi\",\"doi\":\"10.1016/j.sjbs.2024.103944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study was aimed at evaluating the genetic variation and population structure in a collection of 22 rice genotypes. Twenty-two rice genotypes were assessed using quantitative traits and SSR molecular markers for genetic variability and genetic diversity. As for genetic diversity, the genotypes were clarified based on twelve quantitative traits. Clustering produced two large groups: the IR70423-169-2-2 variety was in a branch alone due to its long duration, while, the second group included all rest of genotypes and was split up into two sub-groups. The first sub-group included IR67418-131-2-3-3-3, IR67420-206-3-1-3-3, Giza181, Giza182, Sakha104, and P1044-86-5-3-3-2M. However, pedigree played in divided clustering with Giza181 and Giza182, which were belonging to the Indica type and produced from the same parents. SSR markers produced 87 alleles, with a mean of 4.3 alleles per locus, which were detected in 22 rice genotypes. A higher number of alleles were found with primers RM262, RM244, RM3843, RM212, and RM3330. With an overall mean of 0.837, the polymorphic information content values were high for all SSR markers, ranging from a low of 0.397 for M254 to a high of 0.837 for RM244. The dendogram was divided into six groups according to the types of genotypes, with the pedigree playing a major role for the genetic distance. In order to help breeders choose parents and create suitable hybrids to achieve genetic improvement in crops, particularly rice, SSR is a useful technique for analysing genotype diversity and aiding in the genetic fingerprinting of each variety.</p></div>\",\"PeriodicalId\":21540,\"journal\":{\"name\":\"Saudi Journal of Biological Sciences\",\"volume\":\"31 3\",\"pages\":\"Article 103944\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319562X24000226/pdfft?md5=7cfe419e3caf07c3e6e7f30fdc5bbc06&pid=1-s2.0-S1319562X24000226-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Saudi Journal of Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319562X24000226\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Saudi Journal of Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319562X24000226","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在评估一组 22 个水稻基因型的遗传变异和种群结构。利用数量性状和 SSR 分子标记对 22 个水稻基因型的遗传变异性和遗传多样性进行了评估。在遗传多样性方面,根据 12 个数量性状明确了基因型。聚类产生了两个大组:IR70423-169-2-2 品种由于持续时间长而单独成为一个分支,而第二组包括所有其他基因型,并分成两个亚组。第一组包括 IR67418-131-2-3-3-3、IR67420-206-3-1-3-3、Giza181、Giza182、Sakha104 和 P1044-86-5-3-3-2M。然而,血统与 Giza181 和 Giza182 起着划分聚类的作用,它们属于籼型,由相同的亲本产生。SSR 标记产生了 87 个等位基因,平均每个位点有 4.3 个等位基因,在 22 个水稻基因型中检测到了这些等位基因。引物 RM262、RM244、RM3843、RM212 和 RM3330 产生的等位基因较多。所有 SSR 标记的多态性信息含量总平均值为 0.837,从 M254 的 0.397 到 RM244 的 0.837。根据基因型类型将树枝图分为六组,其中血统对遗传距离起主要作用。为了帮助育种者选择亲本和培育合适的杂交种,实现作物(尤其是水稻)的遗传改良,SSR 是分析基因型多样性和帮助每个品种建立遗传指纹的有用技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic variability and diversity analysis in Oryza sativa L. genotypes using quantitative traits and SSR markers

The present study was aimed at evaluating the genetic variation and population structure in a collection of 22 rice genotypes. Twenty-two rice genotypes were assessed using quantitative traits and SSR molecular markers for genetic variability and genetic diversity. As for genetic diversity, the genotypes were clarified based on twelve quantitative traits. Clustering produced two large groups: the IR70423-169-2-2 variety was in a branch alone due to its long duration, while, the second group included all rest of genotypes and was split up into two sub-groups. The first sub-group included IR67418-131-2-3-3-3, IR67420-206-3-1-3-3, Giza181, Giza182, Sakha104, and P1044-86-5-3-3-2M. However, pedigree played in divided clustering with Giza181 and Giza182, which were belonging to the Indica type and produced from the same parents. SSR markers produced 87 alleles, with a mean of 4.3 alleles per locus, which were detected in 22 rice genotypes. A higher number of alleles were found with primers RM262, RM244, RM3843, RM212, and RM3330. With an overall mean of 0.837, the polymorphic information content values were high for all SSR markers, ranging from a low of 0.397 for M254 to a high of 0.837 for RM244. The dendogram was divided into six groups according to the types of genotypes, with the pedigree playing a major role for the genetic distance. In order to help breeders choose parents and create suitable hybrids to achieve genetic improvement in crops, particularly rice, SSR is a useful technique for analysing genotype diversity and aiding in the genetic fingerprinting of each variety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
4.50%
发文量
551
审稿时长
34 days
期刊介绍: Saudi Journal of Biological Sciences is an English language, peer-reviewed scholarly publication in the area of biological sciences. Saudi Journal of Biological Sciences publishes original papers, reviews and short communications on, but not limited to: • Biology, Ecology and Ecosystems, Environmental and Biodiversity • Conservation • Microbiology • Physiology • Genetics and Epidemiology Saudi Journal of Biological Sciences is the official publication of the Saudi Society for Biological Sciences and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.
期刊最新文献
Deregulation of TWIST1 expression by promoter methylation in gastrointestinal cancers IC - Editorial Board Gene-gene and gene-environmental interaction of dopaminergic system genes in Pakistani children with attention deficit hyperactivity disorder LC-MS metabolomics and molecular docking approaches to identify antihyperglycemic and antioxidant compounds from Melastoma malabathricum L. Leaf Exploring the Global Trends of Bacillus, Trichoderma and Entomopathogenic Fungi for Pathogen and Pest Control in Chili Cultivation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1