基于经验似然法的整数值 AR(1) 模型统一检验

Pub Date : 2024-01-26 DOI:10.1016/j.jspi.2024.106149
Jing Zhang , Bo Li , Yu Wang , Xinyi Wei , Xiaohui Liu
{"title":"基于经验似然法的整数值 AR(1) 模型统一检验","authors":"Jing Zhang ,&nbsp;Bo Li ,&nbsp;Yu Wang ,&nbsp;Xinyi Wei ,&nbsp;Xiaohui Liu","doi":"10.1016/j.jspi.2024.106149","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we suggest an empirical likelihood-based test for the autoregressive coefficient of an integer-valued AR(1) model, i.e., INAR(1). We derive the limit distributions of the resulting test statistic under both null and alternative hypotheses. It turns out that regardless of whether the INAR process is stable or unstable, the statistic is always chi-squared distributed asymptotically under the null hypothesis, and as a result, it can offer unified inferences for the autoregressive coefficient. The performance of its finite sample is also demonstrated using simulations and an empirical example.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378375824000065/pdfft?md5=1c6d378b469788f0758b1d5699e2f871&pid=1-s2.0-S0378375824000065-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An empirical likelihood-based unified test for the integer-valued AR(1) models\",\"authors\":\"Jing Zhang ,&nbsp;Bo Li ,&nbsp;Yu Wang ,&nbsp;Xinyi Wei ,&nbsp;Xiaohui Liu\",\"doi\":\"10.1016/j.jspi.2024.106149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we suggest an empirical likelihood-based test for the autoregressive coefficient of an integer-valued AR(1) model, i.e., INAR(1). We derive the limit distributions of the resulting test statistic under both null and alternative hypotheses. It turns out that regardless of whether the INAR process is stable or unstable, the statistic is always chi-squared distributed asymptotically under the null hypothesis, and as a result, it can offer unified inferences for the autoregressive coefficient. The performance of its finite sample is also demonstrated using simulations and an empirical example.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000065/pdfft?md5=1c6d378b469788f0758b1d5699e2f871&pid=1-s2.0-S0378375824000065-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于经验似然法的整数值 AR(1) 模型(即 INAR(1))自回归系数检验方法。我们推导了所得到的检验统计量在零假设和备择假设下的极限分布。结果表明,无论 INAR 过程是稳定的还是不稳定的,该统计量在零假设下总是渐近呈奇平方分布,因此可以为自回归系数提供统一的推断。此外,还通过模拟和一个经验实例证明了其有限样本的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
An empirical likelihood-based unified test for the integer-valued AR(1) models

In this paper, we suggest an empirical likelihood-based test for the autoregressive coefficient of an integer-valued AR(1) model, i.e., INAR(1). We derive the limit distributions of the resulting test statistic under both null and alternative hypotheses. It turns out that regardless of whether the INAR process is stable or unstable, the statistic is always chi-squared distributed asymptotically under the null hypothesis, and as a result, it can offer unified inferences for the autoregressive coefficient. The performance of its finite sample is also demonstrated using simulations and an empirical example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1