M. Alam, Nassiba Allag, M. Utami, Mir Waheed-Ur-Rehman, Mohd Al Saleh Al-Othoum, Shima Sadaf
{"title":"α-氧化铋纳米粒子的简便绿色合成:在酸性介质中对葡萄糖和尿酸进行光催化和电化学传感","authors":"M. Alam, Nassiba Allag, M. Utami, Mir Waheed-Ur-Rehman, Mohd Al Saleh Al-Othoum, Shima Sadaf","doi":"10.3390/jcs8020047","DOIUrl":null,"url":null,"abstract":"The nanocrystalline bismuth oxide (Bi2O3) was produced utilizing a green combustion process with Mexican Mint gel as the fuel. The powder X-ray diffraction (PXRD) method proved the nanocrystalline nature and Bi2O3 nanoparticles (BONPs) in α phase and the average crystalline size of BONPs nanoparticles has been found to be 60 nm. The spherical-shaped structure with bright dot-like spots in the center of the selected area diffraction (SAED) is confirmed by the scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDAX) in conjunction with the transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) demonstrating the crystalline behavior of green NPs. The Kubelka-Monk function was used to analyze diffuse reflectance spectra, and the results revealed that BONPs have a band gap of 3.07 eV. When utilized to evaluate the photocatalytic capabilities of NPs, the direct green (DG) and fast orange red (F-OR) dyes were found to be activated at 618 and 503 nm, respectively. After 120 min of exposure to UV radiation, the DG and F-OR dyes’ photodegradation rate reduced its hue by up to 88.2% and 94%, respectively. Cyclic voltammetry (CV) and electrochemical impedance techniques in 0.1 N HCl were used to efficiently analyze the electrochemical behavior of the produced BONPs. A carbon paste electrode that had been enhanced with BONPs was used to detect the glucose and uric acid in a 0.1 N HCl solution. The results of the cyclic voltammetry point to the excellent electrochemical qualities of BONPs. Bi2O3 electrode material was found to have a proton diffusion coefficient of 1.039 × 10−5 cm2s−1. BONP exhibits significant potential as an electrode material for sensing chemicals like glucose and uric acid, according to the electrochemical behavior.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"81 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile Green Synthesis of α-Bismuth Oxide Nanoparticles: Its Photocatalytic and Electrochemical Sensing of Glucose and Uric Acid in an Acidic Medium\",\"authors\":\"M. Alam, Nassiba Allag, M. Utami, Mir Waheed-Ur-Rehman, Mohd Al Saleh Al-Othoum, Shima Sadaf\",\"doi\":\"10.3390/jcs8020047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nanocrystalline bismuth oxide (Bi2O3) was produced utilizing a green combustion process with Mexican Mint gel as the fuel. The powder X-ray diffraction (PXRD) method proved the nanocrystalline nature and Bi2O3 nanoparticles (BONPs) in α phase and the average crystalline size of BONPs nanoparticles has been found to be 60 nm. The spherical-shaped structure with bright dot-like spots in the center of the selected area diffraction (SAED) is confirmed by the scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDAX) in conjunction with the transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) demonstrating the crystalline behavior of green NPs. The Kubelka-Monk function was used to analyze diffuse reflectance spectra, and the results revealed that BONPs have a band gap of 3.07 eV. When utilized to evaluate the photocatalytic capabilities of NPs, the direct green (DG) and fast orange red (F-OR) dyes were found to be activated at 618 and 503 nm, respectively. After 120 min of exposure to UV radiation, the DG and F-OR dyes’ photodegradation rate reduced its hue by up to 88.2% and 94%, respectively. Cyclic voltammetry (CV) and electrochemical impedance techniques in 0.1 N HCl were used to efficiently analyze the electrochemical behavior of the produced BONPs. A carbon paste electrode that had been enhanced with BONPs was used to detect the glucose and uric acid in a 0.1 N HCl solution. The results of the cyclic voltammetry point to the excellent electrochemical qualities of BONPs. Bi2O3 electrode material was found to have a proton diffusion coefficient of 1.039 × 10−5 cm2s−1. BONP exhibits significant potential as an electrode material for sensing chemicals like glucose and uric acid, according to the electrochemical behavior.\",\"PeriodicalId\":502935,\"journal\":{\"name\":\"Journal of Composites Science\",\"volume\":\"81 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jcs8020047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs8020047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Facile Green Synthesis of α-Bismuth Oxide Nanoparticles: Its Photocatalytic and Electrochemical Sensing of Glucose and Uric Acid in an Acidic Medium
The nanocrystalline bismuth oxide (Bi2O3) was produced utilizing a green combustion process with Mexican Mint gel as the fuel. The powder X-ray diffraction (PXRD) method proved the nanocrystalline nature and Bi2O3 nanoparticles (BONPs) in α phase and the average crystalline size of BONPs nanoparticles has been found to be 60 nm. The spherical-shaped structure with bright dot-like spots in the center of the selected area diffraction (SAED) is confirmed by the scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDAX) in conjunction with the transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) demonstrating the crystalline behavior of green NPs. The Kubelka-Monk function was used to analyze diffuse reflectance spectra, and the results revealed that BONPs have a band gap of 3.07 eV. When utilized to evaluate the photocatalytic capabilities of NPs, the direct green (DG) and fast orange red (F-OR) dyes were found to be activated at 618 and 503 nm, respectively. After 120 min of exposure to UV radiation, the DG and F-OR dyes’ photodegradation rate reduced its hue by up to 88.2% and 94%, respectively. Cyclic voltammetry (CV) and electrochemical impedance techniques in 0.1 N HCl were used to efficiently analyze the electrochemical behavior of the produced BONPs. A carbon paste electrode that had been enhanced with BONPs was used to detect the glucose and uric acid in a 0.1 N HCl solution. The results of the cyclic voltammetry point to the excellent electrochemical qualities of BONPs. Bi2O3 electrode material was found to have a proton diffusion coefficient of 1.039 × 10−5 cm2s−1. BONP exhibits significant potential as an electrode material for sensing chemicals like glucose and uric acid, according to the electrochemical behavior.