{"title":"中国西北部北山造山带白垩纪中期的加速冷却:来自磷灰石裂变轨道热年代学的证据","authors":"Fujun Wang, Meng Luo, Zhiyuan He, Yiqiong Wang, Bihai Zheng, Zhiyong Zhang, Xiao Hu, Wenbin Zhu","doi":"10.2113/2023/lithosphere_2023_239","DOIUrl":null,"url":null,"abstract":"\n The Beishan orogen, a significant component of the southern Altaids, presents an opportunity for investigating the intracontinental deformation and exhumation history of the Altaids during the Mesozoic era. Although previous studies indicated that the Beishan orogen has experienced multiple reactivation since the late Mesozoic, the precise extent of these events remains poorly constrained. Here, we provide a comprehensive synthesis of field observations and apatite fission track (AFT) thermochronological dating throughout the Beishan orogen. Detailed field observations confirmed four major E-W trending thrusts in our study area. Based on the youngest truncated strata associated with the thrusts and previous dating results from neighboring regions, we propose that these thrust sheets likely developed in the late Middle Jurassic. AFT dating results from seven pre-Mesozoic granitoid samples and associated with thermal history modeling demonstrate that the Beishan orogen experienced a rapid basement cooling during the mid-Cretaceous (~115–80 Ma). Moreover, a compilation of previously published and newly gained AFT data reveals a comparable mid-Cretaceous cooling event in other parts of Central Asia, such as Qilian Shan, Eastern Tianshan, and Altai-Sayan. This observation suggests that the mid-Cretaceous cooling event is more likely to be regional rather than localized. This mid-Cretaceous cooling pulse is interpreted as a tectonic exhumation controlled by boundary faults and related to the rotation of the Junggar and Tarim basins. These processes are linked to distant plate-margin events along the Eurasian continent.","PeriodicalId":18147,"journal":{"name":"Lithosphere","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mid-Cretaceous Accelerated Cooling of the Beishan Orogen, NW China: Evidence from Apatite Fission Track Thermochronology\",\"authors\":\"Fujun Wang, Meng Luo, Zhiyuan He, Yiqiong Wang, Bihai Zheng, Zhiyong Zhang, Xiao Hu, Wenbin Zhu\",\"doi\":\"10.2113/2023/lithosphere_2023_239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Beishan orogen, a significant component of the southern Altaids, presents an opportunity for investigating the intracontinental deformation and exhumation history of the Altaids during the Mesozoic era. Although previous studies indicated that the Beishan orogen has experienced multiple reactivation since the late Mesozoic, the precise extent of these events remains poorly constrained. Here, we provide a comprehensive synthesis of field observations and apatite fission track (AFT) thermochronological dating throughout the Beishan orogen. Detailed field observations confirmed four major E-W trending thrusts in our study area. Based on the youngest truncated strata associated with the thrusts and previous dating results from neighboring regions, we propose that these thrust sheets likely developed in the late Middle Jurassic. AFT dating results from seven pre-Mesozoic granitoid samples and associated with thermal history modeling demonstrate that the Beishan orogen experienced a rapid basement cooling during the mid-Cretaceous (~115–80 Ma). Moreover, a compilation of previously published and newly gained AFT data reveals a comparable mid-Cretaceous cooling event in other parts of Central Asia, such as Qilian Shan, Eastern Tianshan, and Altai-Sayan. This observation suggests that the mid-Cretaceous cooling event is more likely to be regional rather than localized. This mid-Cretaceous cooling pulse is interpreted as a tectonic exhumation controlled by boundary faults and related to the rotation of the Junggar and Tarim basins. These processes are linked to distant plate-margin events along the Eurasian continent.\",\"PeriodicalId\":18147,\"journal\":{\"name\":\"Lithosphere\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lithosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2113/2023/lithosphere_2023_239\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/2023/lithosphere_2023_239","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Mid-Cretaceous Accelerated Cooling of the Beishan Orogen, NW China: Evidence from Apatite Fission Track Thermochronology
The Beishan orogen, a significant component of the southern Altaids, presents an opportunity for investigating the intracontinental deformation and exhumation history of the Altaids during the Mesozoic era. Although previous studies indicated that the Beishan orogen has experienced multiple reactivation since the late Mesozoic, the precise extent of these events remains poorly constrained. Here, we provide a comprehensive synthesis of field observations and apatite fission track (AFT) thermochronological dating throughout the Beishan orogen. Detailed field observations confirmed four major E-W trending thrusts in our study area. Based on the youngest truncated strata associated with the thrusts and previous dating results from neighboring regions, we propose that these thrust sheets likely developed in the late Middle Jurassic. AFT dating results from seven pre-Mesozoic granitoid samples and associated with thermal history modeling demonstrate that the Beishan orogen experienced a rapid basement cooling during the mid-Cretaceous (~115–80 Ma). Moreover, a compilation of previously published and newly gained AFT data reveals a comparable mid-Cretaceous cooling event in other parts of Central Asia, such as Qilian Shan, Eastern Tianshan, and Altai-Sayan. This observation suggests that the mid-Cretaceous cooling event is more likely to be regional rather than localized. This mid-Cretaceous cooling pulse is interpreted as a tectonic exhumation controlled by boundary faults and related to the rotation of the Junggar and Tarim basins. These processes are linked to distant plate-margin events along the Eurasian continent.
期刊介绍:
The open access journal will have an expanded scope covering research in all areas of earth, planetary, and environmental sciences, providing a unique publishing choice for authors in the geoscience community.