MHAiR:多模态人类行为的音像表示数据集

Data Pub Date : 2024-01-25 DOI:10.3390/data9020021
M. Shaikh, Douglas Chai, Syed Mohammed Shamsul Islam, Naveed Akhtar
{"title":"MHAiR:多模态人类行为的音像表示数据集","authors":"M. Shaikh, Douglas Chai, Syed Mohammed Shamsul Islam, Naveed Akhtar","doi":"10.3390/data9020021","DOIUrl":null,"url":null,"abstract":"Audio-image representations for a multimodal human action (MHAiR) dataset contains six different image representations of the audio signals that capture the temporal dynamics of the actions in a very compact and informative way. The dataset was extracted from the audio recordings which were captured from an existing video dataset, i.e., UCF101. Each data sample captured a duration of approximately 10 s long, and the overall dataset was split into 4893 training samples and 1944 testing samples. The resulting feature sequences were then converted into images, which can be used for human action recognition and other related tasks. These images can be used as a benchmark dataset for evaluating the performance of machine learning models for human action recognition and related tasks. These audio-image representations could be suitable for a wide range of applications, such as surveillance, healthcare monitoring, and robotics. The dataset can also be used for transfer learning, where pre-trained models can be fine-tuned on a specific task using specific audio images. Thus, this dataset can facilitate the development of new techniques and approaches for improving the accuracy of human action-related tasks and also serve as a standard benchmark for testing the performance of different machine learning models and algorithms.","PeriodicalId":502371,"journal":{"name":"Data","volume":"17 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MHAiR: A Dataset of Audio-Image Representations for Multimodal Human Actions\",\"authors\":\"M. Shaikh, Douglas Chai, Syed Mohammed Shamsul Islam, Naveed Akhtar\",\"doi\":\"10.3390/data9020021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Audio-image representations for a multimodal human action (MHAiR) dataset contains six different image representations of the audio signals that capture the temporal dynamics of the actions in a very compact and informative way. The dataset was extracted from the audio recordings which were captured from an existing video dataset, i.e., UCF101. Each data sample captured a duration of approximately 10 s long, and the overall dataset was split into 4893 training samples and 1944 testing samples. The resulting feature sequences were then converted into images, which can be used for human action recognition and other related tasks. These images can be used as a benchmark dataset for evaluating the performance of machine learning models for human action recognition and related tasks. These audio-image representations could be suitable for a wide range of applications, such as surveillance, healthcare monitoring, and robotics. The dataset can also be used for transfer learning, where pre-trained models can be fine-tuned on a specific task using specific audio images. Thus, this dataset can facilitate the development of new techniques and approaches for improving the accuracy of human action-related tasks and also serve as a standard benchmark for testing the performance of different machine learning models and algorithms.\",\"PeriodicalId\":502371,\"journal\":{\"name\":\"Data\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/data9020021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/data9020021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多模态人类动作的音频图像表示法(MHAiR)数据集包含音频信号的六种不同图像表示法,能以非常紧凑和翔实的方式捕捉动作的时间动态。该数据集是从现有视频数据集(即 UCF101)中捕获的音频记录中提取的。每个数据样本的捕获时长约为 10 秒,整个数据集被分成 4893 个训练样本和 1944 个测试样本。然后将得到的特征序列转换成图像,用于人类动作识别和其他相关任务。这些图像可作为基准数据集,用于评估机器学习模型在人类动作识别和相关任务中的性能。这些音频图像表示法可适用于广泛的应用领域,如监控、医疗保健监测和机器人技术。该数据集还可用于迁移学习,使用特定的音频图像在特定任务中对预先训练好的模型进行微调。因此,该数据集可促进新技术和新方法的开发,以提高人类动作相关任务的准确性,还可作为测试不同机器学习模型和算法性能的标准基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MHAiR: A Dataset of Audio-Image Representations for Multimodal Human Actions
Audio-image representations for a multimodal human action (MHAiR) dataset contains six different image representations of the audio signals that capture the temporal dynamics of the actions in a very compact and informative way. The dataset was extracted from the audio recordings which were captured from an existing video dataset, i.e., UCF101. Each data sample captured a duration of approximately 10 s long, and the overall dataset was split into 4893 training samples and 1944 testing samples. The resulting feature sequences were then converted into images, which can be used for human action recognition and other related tasks. These images can be used as a benchmark dataset for evaluating the performance of machine learning models for human action recognition and related tasks. These audio-image representations could be suitable for a wide range of applications, such as surveillance, healthcare monitoring, and robotics. The dataset can also be used for transfer learning, where pre-trained models can be fine-tuned on a specific task using specific audio images. Thus, this dataset can facilitate the development of new techniques and approaches for improving the accuracy of human action-related tasks and also serve as a standard benchmark for testing the performance of different machine learning models and algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SparrKULee: A Speech-Evoked Auditory Response Repository from KU Leuven, Containing the EEG of 85 Participants Bootstrap Method as a Tool for Analyzing Data with Atypical Distributions Deviating from Parametric Assumptions: Critique and Effectiveness Evaluation SaBi3d—A LiDAR Point Cloud Data Set of Car-to-Bicycle Overtaking Maneuvers Data Descriptor of Snakebites in Brazil from 2007 to 2020 Optimizing Database Performance in Complex Event Processing through Indexing Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1