{"title":"利用实验和构成模型研究 FDM 制造的聚乳酸部件的大应变压缩特性","authors":"Shrushti Maheshwari, Zafar Alam, Sarthak S. Singh","doi":"10.1108/rpj-08-2023-0286","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this study is to experimentally investigate the large deformation compression characteristics of fused deposition modelling (FDM)-printed poly lactic acid (PLA), considering the combined effect of infill density and strain rate, and to develop a constitutive viscoplastic model that can incorporate the infill density to predict the experimental result.\n\n\nDesign/methodology/approach\nThe experimental approach focuses on strain rate-dependent (2.1 × 10−4, 2.1 × 10−3, and 2.1 × 10−2 s−1) compression testing for varied infill densities. Scanning electron microscopy (SEM) imaging of compressed materials is used to investigate deformation processes. A hyperelastic-viscoplastic constitutive model is constructed that can predict mechanical deformations at different strain rates and infill densities.\n\n\nFindings\nThe yield stress of PLA increased with increase in strain rate and infill density. However, higher degree of strain-softening response was witnessed for the strain rate corresponding to 2.1 × 10−2 s−1. While filament splitting and twisting were identified as the damage mechanisms at higher strain rates, matrix crazing was observed as the primary deformation mechanism for higher infill density (95%). The developed constitutive model captured yield stress and post-yield softening behaviour of FDM build PLA samples with a high R2 value of 0.99.\n\n\nOriginality/value\nThis paper addresses the need to analyse and predict the mechanical response of FDM print polymers (PLA) undergoing extensive strain-compressive loading through a hyperelastic-viscoplastic constitutive model. This study links combined effects of the printing parameter (infill density) with the experimental parameter (strain rate).\n","PeriodicalId":509442,"journal":{"name":"Rapid Prototyping Journal","volume":"9 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the large strain compression properties of PLA parts manufactured by FDM using experiments and constitutive modeling\",\"authors\":\"Shrushti Maheshwari, Zafar Alam, Sarthak S. Singh\",\"doi\":\"10.1108/rpj-08-2023-0286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe purpose of this study is to experimentally investigate the large deformation compression characteristics of fused deposition modelling (FDM)-printed poly lactic acid (PLA), considering the combined effect of infill density and strain rate, and to develop a constitutive viscoplastic model that can incorporate the infill density to predict the experimental result.\\n\\n\\nDesign/methodology/approach\\nThe experimental approach focuses on strain rate-dependent (2.1 × 10−4, 2.1 × 10−3, and 2.1 × 10−2 s−1) compression testing for varied infill densities. Scanning electron microscopy (SEM) imaging of compressed materials is used to investigate deformation processes. A hyperelastic-viscoplastic constitutive model is constructed that can predict mechanical deformations at different strain rates and infill densities.\\n\\n\\nFindings\\nThe yield stress of PLA increased with increase in strain rate and infill density. However, higher degree of strain-softening response was witnessed for the strain rate corresponding to 2.1 × 10−2 s−1. While filament splitting and twisting were identified as the damage mechanisms at higher strain rates, matrix crazing was observed as the primary deformation mechanism for higher infill density (95%). The developed constitutive model captured yield stress and post-yield softening behaviour of FDM build PLA samples with a high R2 value of 0.99.\\n\\n\\nOriginality/value\\nThis paper addresses the need to analyse and predict the mechanical response of FDM print polymers (PLA) undergoing extensive strain-compressive loading through a hyperelastic-viscoplastic constitutive model. This study links combined effects of the printing parameter (infill density) with the experimental parameter (strain rate).\\n\",\"PeriodicalId\":509442,\"journal\":{\"name\":\"Rapid Prototyping Journal\",\"volume\":\"9 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rapid Prototyping Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/rpj-08-2023-0286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/rpj-08-2023-0286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigating the large strain compression properties of PLA parts manufactured by FDM using experiments and constitutive modeling
Purpose
The purpose of this study is to experimentally investigate the large deformation compression characteristics of fused deposition modelling (FDM)-printed poly lactic acid (PLA), considering the combined effect of infill density and strain rate, and to develop a constitutive viscoplastic model that can incorporate the infill density to predict the experimental result.
Design/methodology/approach
The experimental approach focuses on strain rate-dependent (2.1 × 10−4, 2.1 × 10−3, and 2.1 × 10−2 s−1) compression testing for varied infill densities. Scanning electron microscopy (SEM) imaging of compressed materials is used to investigate deformation processes. A hyperelastic-viscoplastic constitutive model is constructed that can predict mechanical deformations at different strain rates and infill densities.
Findings
The yield stress of PLA increased with increase in strain rate and infill density. However, higher degree of strain-softening response was witnessed for the strain rate corresponding to 2.1 × 10−2 s−1. While filament splitting and twisting were identified as the damage mechanisms at higher strain rates, matrix crazing was observed as the primary deformation mechanism for higher infill density (95%). The developed constitutive model captured yield stress and post-yield softening behaviour of FDM build PLA samples with a high R2 value of 0.99.
Originality/value
This paper addresses the need to analyse and predict the mechanical response of FDM print polymers (PLA) undergoing extensive strain-compressive loading through a hyperelastic-viscoplastic constitutive model. This study links combined effects of the printing parameter (infill density) with the experimental parameter (strain rate).