Jain Vinith P.R., Navin Sam K., V. T., Joseph Godfrey A., Venkadesan Arunachalam
{"title":"为电力系统规划开发长期太阳能光伏发电预测模型","authors":"Jain Vinith P.R., Navin Sam K., V. T., Joseph Godfrey A., Venkadesan Arunachalam","doi":"10.1108/wje-09-2023-0407","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to Solar photovoltaic (PV) power can significantly impact the power system because of its intermittent nature. Hence, an accurate solar PV power forecasting model is required for appropriate power system planning.\n\n\nDesign/methodology/approach\nIn this paper, a long short-term memory (LSTM)-based double deep Q-learning (DDQL) neural network (NN) is proposed for forecasting solar PV power indirectly over the long-term horizon. The past solar irradiance, temperature and wind speed are used for forecasting the solar PV power for a place using the proposed forecasting model.\n\n\nFindings\nThe LSTM-based DDQL NN reduces over- and underestimation and avoids gradient vanishing. Thus, the proposed model improves the forecasting accuracy of solar PV power using deep learning techniques (DLTs). In addition, the proposed model requires less training time and forecasts solar PV power with improved stability.\n\n\nOriginality/value\nThe proposed model is trained and validated for several places with different climatic patterns and seasons. The proposed model is also tested for a place with a temperate climatic pattern by constructing an experimental solar PV system. The training, validation and testing results have confirmed the practicality of the proposed solar PV power forecasting model using LSTM-based DDQL NN.\n","PeriodicalId":509668,"journal":{"name":"World Journal of Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a long-term solar PV power forecasting model for power system planning\",\"authors\":\"Jain Vinith P.R., Navin Sam K., V. T., Joseph Godfrey A., Venkadesan Arunachalam\",\"doi\":\"10.1108/wje-09-2023-0407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis paper aims to Solar photovoltaic (PV) power can significantly impact the power system because of its intermittent nature. Hence, an accurate solar PV power forecasting model is required for appropriate power system planning.\\n\\n\\nDesign/methodology/approach\\nIn this paper, a long short-term memory (LSTM)-based double deep Q-learning (DDQL) neural network (NN) is proposed for forecasting solar PV power indirectly over the long-term horizon. The past solar irradiance, temperature and wind speed are used for forecasting the solar PV power for a place using the proposed forecasting model.\\n\\n\\nFindings\\nThe LSTM-based DDQL NN reduces over- and underestimation and avoids gradient vanishing. Thus, the proposed model improves the forecasting accuracy of solar PV power using deep learning techniques (DLTs). In addition, the proposed model requires less training time and forecasts solar PV power with improved stability.\\n\\n\\nOriginality/value\\nThe proposed model is trained and validated for several places with different climatic patterns and seasons. The proposed model is also tested for a place with a temperate climatic pattern by constructing an experimental solar PV system. The training, validation and testing results have confirmed the practicality of the proposed solar PV power forecasting model using LSTM-based DDQL NN.\\n\",\"PeriodicalId\":509668,\"journal\":{\"name\":\"World Journal of Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/wje-09-2023-0407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/wje-09-2023-0407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a long-term solar PV power forecasting model for power system planning
Purpose
This paper aims to Solar photovoltaic (PV) power can significantly impact the power system because of its intermittent nature. Hence, an accurate solar PV power forecasting model is required for appropriate power system planning.
Design/methodology/approach
In this paper, a long short-term memory (LSTM)-based double deep Q-learning (DDQL) neural network (NN) is proposed for forecasting solar PV power indirectly over the long-term horizon. The past solar irradiance, temperature and wind speed are used for forecasting the solar PV power for a place using the proposed forecasting model.
Findings
The LSTM-based DDQL NN reduces over- and underestimation and avoids gradient vanishing. Thus, the proposed model improves the forecasting accuracy of solar PV power using deep learning techniques (DLTs). In addition, the proposed model requires less training time and forecasts solar PV power with improved stability.
Originality/value
The proposed model is trained and validated for several places with different climatic patterns and seasons. The proposed model is also tested for a place with a temperate climatic pattern by constructing an experimental solar PV system. The training, validation and testing results have confirmed the practicality of the proposed solar PV power forecasting model using LSTM-based DDQL NN.