提高高强度钢的焊接强度:区域预热在 RSW 中的作用

IF 2.4 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Testing Pub Date : 2024-01-24 DOI:10.1515/mt-2023-0241
Kemal Aydin, M. Hıdıroğlu, N. Kahraman
{"title":"提高高强度钢的焊接强度:区域预热在 RSW 中的作用","authors":"Kemal Aydin, M. Hıdıroğlu, N. Kahraman","doi":"10.1515/mt-2023-0241","DOIUrl":null,"url":null,"abstract":"\n In this study, automotive in sector use STRENX 700 CR and DP 800 steels were joined by resistance spot welding using medium frequency direct current. Some parts were joined under atmospheric conditions, while others were joined by applying regional preheating to their heat-affected zones before welding. The design, manufacturing, and adaptation of the preheating system to the welding machine were carried out as part of this study, considering it as a new system. After the joining process, nondestructive and destructive tests were performed on resistance spot welding connections between STRENX 700 CR and DP 800 steels. Hardness tests revealed that the preheating applied to the heat-affected zones before welding reduced the hardness of the weld metal by approximately 8 %, while the microstructure analysis showed that the regional preheating increased both the weld metal and the heat-affected zones width. The tensile-shear strength increased by about 7 %, and the cross-tension test strength increased by about 5 % with the preheating applied to the heat-affected zones before welding. In both the tensile-shear and cross-tension tests, all failures occurred in the form of button shearing from the heat-affected zones. The regional preheating treated specimens showed the highest fatigue life, with an average of 947,632 cycles.","PeriodicalId":18231,"journal":{"name":"Materials Testing","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing weld strength in high-strength steels: the role of regional preheating in RSW\",\"authors\":\"Kemal Aydin, M. Hıdıroğlu, N. Kahraman\",\"doi\":\"10.1515/mt-2023-0241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, automotive in sector use STRENX 700 CR and DP 800 steels were joined by resistance spot welding using medium frequency direct current. Some parts were joined under atmospheric conditions, while others were joined by applying regional preheating to their heat-affected zones before welding. The design, manufacturing, and adaptation of the preheating system to the welding machine were carried out as part of this study, considering it as a new system. After the joining process, nondestructive and destructive tests were performed on resistance spot welding connections between STRENX 700 CR and DP 800 steels. Hardness tests revealed that the preheating applied to the heat-affected zones before welding reduced the hardness of the weld metal by approximately 8 %, while the microstructure analysis showed that the regional preheating increased both the weld metal and the heat-affected zones width. The tensile-shear strength increased by about 7 %, and the cross-tension test strength increased by about 5 % with the preheating applied to the heat-affected zones before welding. In both the tensile-shear and cross-tension tests, all failures occurred in the form of button shearing from the heat-affected zones. The regional preheating treated specimens showed the highest fatigue life, with an average of 947,632 cycles.\",\"PeriodicalId\":18231,\"journal\":{\"name\":\"Materials Testing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/mt-2023-0241\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Testing","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/mt-2023-0241","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,汽车行业使用的 STRENX 700 CR 和 DP 800 钢通过中频直流电阻点焊进行焊接。一些部件在大气条件下焊接,另一些部件则在焊接前对热影响区进行区域预热。预热系统的设计、制造和与焊机的匹配是本研究的一部分,将其视为一种新系统。连接过程结束后,对 STRENX 700 CR 和 DP 800 钢之间的电阻点焊连接进行了无损和破坏性测试。硬度测试表明,焊接前对热影响区进行的预热使焊接金属的硬度降低了约 8%,而微观结构分析表明,区域预热增加了焊接金属和热影响区的宽度。焊接前对热影响区进行预热后,拉伸剪切强度提高了约 7%,交叉拉伸试验强度提高了约 5%。在拉伸剪切试验和横向拉伸试验中,所有失效都发生在热影响区的纽扣剪切上。经过区域预热处理的试样疲劳寿命最高,平均达到 947 632 个循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing weld strength in high-strength steels: the role of regional preheating in RSW
In this study, automotive in sector use STRENX 700 CR and DP 800 steels were joined by resistance spot welding using medium frequency direct current. Some parts were joined under atmospheric conditions, while others were joined by applying regional preheating to their heat-affected zones before welding. The design, manufacturing, and adaptation of the preheating system to the welding machine were carried out as part of this study, considering it as a new system. After the joining process, nondestructive and destructive tests were performed on resistance spot welding connections between STRENX 700 CR and DP 800 steels. Hardness tests revealed that the preheating applied to the heat-affected zones before welding reduced the hardness of the weld metal by approximately 8 %, while the microstructure analysis showed that the regional preheating increased both the weld metal and the heat-affected zones width. The tensile-shear strength increased by about 7 %, and the cross-tension test strength increased by about 5 % with the preheating applied to the heat-affected zones before welding. In both the tensile-shear and cross-tension tests, all failures occurred in the form of button shearing from the heat-affected zones. The regional preheating treated specimens showed the highest fatigue life, with an average of 947,632 cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Testing
Materials Testing 工程技术-材料科学:表征与测试
CiteScore
4.20
自引率
36.00%
发文量
165
审稿时长
4-8 weeks
期刊介绍: Materials Testing is a SCI-listed English language journal dealing with all aspects of material and component testing with a special focus on transfer between laboratory research into industrial application. The journal provides first-hand information on non-destructive, destructive, optical, physical and chemical test procedures. It contains exclusive articles which are peer-reviewed applying respectively high international quality criterions.
期刊最新文献
Enhancing the performance of a additive manufactured battery holder using a coupled artificial neural network with a hybrid flood algorithm and water wave algorithm Microstructural, mechanical and nondestructive characterization of X60 grade steel pipes welded by different processes Microstructural characteristics and mechanical properties of 3D printed Kevlar fibre reinforced Onyx composite Experimental investigations and material modeling of an elastomer jaw coupling Numerical analysis of cathodic protection of a Q355ND frame in a shallow water subsea Christmas tree
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1