TXED:用于人工智能的德克萨斯州地震数据集

Yangkang Chen, Alexandras Savvaidis, O.M. Saad, Guo-Chin Dino Huang, Daniel Siervo, Vincent O’Sullivan, Cooper McCabe, Bede Uku, Preston Fleck, Grace Burke, Natalie L. Alvarez, Jessica Domino, I. Grigoratos
{"title":"TXED:用于人工智能的德克萨斯州地震数据集","authors":"Yangkang Chen, Alexandras Savvaidis, O.M. Saad, Guo-Chin Dino Huang, Daniel Siervo, Vincent O’Sullivan, Cooper McCabe, Bede Uku, Preston Fleck, Grace Burke, Natalie L. Alvarez, Jessica Domino, I. Grigoratos","doi":"10.1785/0220230327","DOIUrl":null,"url":null,"abstract":"\n Machine-learning (ML) seismology relies on large datasets with high-fidelity labels from humans to train generalized models. Among the seismological applications of ML, earthquake detection, and P- and S-wave arrival picking are the most widely studied, with capabilities that can exceed humans. Here, we present a regional artificial intelligence (AI) earthquake dataset (TXED) compiled for the state of Texas. The TXED dataset is composed of earthquake signals with manually picked P- and S-wave arrival times and manually picked noise waveforms corresponding to more than 20,000 earthquake events spanning from the beginning of the Texas seismological network (TexNet) (1 January 2017) to date. These data are a supplement to the existing worldwide open-access seismological AI datasets and represent the signal and noise characteristics of Texas. Direct applications of the TXED datasets include improving the performance of a global picking model in Texas by transfer learning using the new dataset. This dataset will also serve as a benchmark dataset for fundamental AI research like designing seismology-oriented deep-learning architectures. We plan to continue to expand the TXED dataset as more observations are made by TexNet analysts.","PeriodicalId":508466,"journal":{"name":"Seismological Research Letters","volume":"38 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TXED: The Texas Earthquake Dataset for AI\",\"authors\":\"Yangkang Chen, Alexandras Savvaidis, O.M. Saad, Guo-Chin Dino Huang, Daniel Siervo, Vincent O’Sullivan, Cooper McCabe, Bede Uku, Preston Fleck, Grace Burke, Natalie L. Alvarez, Jessica Domino, I. Grigoratos\",\"doi\":\"10.1785/0220230327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Machine-learning (ML) seismology relies on large datasets with high-fidelity labels from humans to train generalized models. Among the seismological applications of ML, earthquake detection, and P- and S-wave arrival picking are the most widely studied, with capabilities that can exceed humans. Here, we present a regional artificial intelligence (AI) earthquake dataset (TXED) compiled for the state of Texas. The TXED dataset is composed of earthquake signals with manually picked P- and S-wave arrival times and manually picked noise waveforms corresponding to more than 20,000 earthquake events spanning from the beginning of the Texas seismological network (TexNet) (1 January 2017) to date. These data are a supplement to the existing worldwide open-access seismological AI datasets and represent the signal and noise characteristics of Texas. Direct applications of the TXED datasets include improving the performance of a global picking model in Texas by transfer learning using the new dataset. This dataset will also serve as a benchmark dataset for fundamental AI research like designing seismology-oriented deep-learning architectures. We plan to continue to expand the TXED dataset as more observations are made by TexNet analysts.\",\"PeriodicalId\":508466,\"journal\":{\"name\":\"Seismological Research Letters\",\"volume\":\"38 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seismological Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1785/0220230327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0220230327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)地震学依赖于带有人类高保真标签的大型数据集来训练通用模型。在机器学习的地震学应用中,地震探测、P 波和 S 波到达采样是研究最广泛的,其能力可以超过人类。在此,我们介绍一个为德克萨斯州编制的地区人工智能(AI)地震数据集(TXED)。TXED 数据集由人工选取的 P 波和 S 波到达时间以及人工选取的噪声波形的地震信号组成,对应于从德克萨斯地震学网络(TexNet)开始(2017 年 1 月 1 日)至今的 20,000 多个地震事件。这些数据是对现有的全球开放式地震人工影响数据集的补充,代表了德克萨斯州的信号和噪声特征。TXED 数据集的直接应用包括通过使用新数据集进行迁移学习,提高德克萨斯州全球采样模型的性能。该数据集还将作为基础人工智能研究的基准数据集,如设计面向地震学的深度学习架构。我们计划随着 TexNet 分析师进行更多观测,继续扩展 TXED 数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TXED: The Texas Earthquake Dataset for AI
Machine-learning (ML) seismology relies on large datasets with high-fidelity labels from humans to train generalized models. Among the seismological applications of ML, earthquake detection, and P- and S-wave arrival picking are the most widely studied, with capabilities that can exceed humans. Here, we present a regional artificial intelligence (AI) earthquake dataset (TXED) compiled for the state of Texas. The TXED dataset is composed of earthquake signals with manually picked P- and S-wave arrival times and manually picked noise waveforms corresponding to more than 20,000 earthquake events spanning from the beginning of the Texas seismological network (TexNet) (1 January 2017) to date. These data are a supplement to the existing worldwide open-access seismological AI datasets and represent the signal and noise characteristics of Texas. Direct applications of the TXED datasets include improving the performance of a global picking model in Texas by transfer learning using the new dataset. This dataset will also serve as a benchmark dataset for fundamental AI research like designing seismology-oriented deep-learning architectures. We plan to continue to expand the TXED dataset as more observations are made by TexNet analysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Geodetic-Based Earthquake Early Warning System for Colombia and Ecuador Constraining the Geometry of the Northwest Pacific Slab Using Deep Clustering of Slab Guided Waves An Empirically Constrained Forecasting Strategy for Induced Earthquake Magnitudes Using Extreme Value Theory A Software Tool for Hybrid Earthquake Forecasting in New Zealand DASPy: A Python Toolbox for DAS Seismology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1