利用条件测量增强双模非高斯态的量子特征和远距传物保真度

IF 1.4 4区 物理与天体物理 Q3 OPTICS Laser Physics Letters Pub Date : 2024-01-24 DOI:10.1088/1612-202x/ad1f4e
M. D. Truong, Quang Dat Tran
{"title":"利用条件测量增强双模非高斯态的量子特征和远距传物保真度","authors":"M. D. Truong, Quang Dat Tran","doi":"10.1088/1612-202x/ad1f4e","DOIUrl":null,"url":null,"abstract":"\n The family of two-mode non-Gaussian entangled states, including the pair coherent states (PCSs) and their genealogies, has been extensively investigated regarding their quantum properties and their practical applications in quantum information. Specifically, certain states, such as the multiphoton catalytic pair coherent states (MCPCSs), have been newly introduced under specific experimental conditions. For a more feasible approach, in this paper, we introduce novel nonclassical states obtained by subtracting photons through conditional measurements using beam splitters applied to the two modes of the PCSs. These states are called pair coherent states with conditional measurements (PCSCMs). Our purpose is to demonstrate that the quantum features, such as entanglement, Einstein–Podolsky–Rosen (EPR) correlation, EPR steering, and the average fidelity in teleportation can be enhanced in comparison with both the original PCSs and the MCPCSs. In specific cases, several characteristics are observed in PCSCMs but not inspected in both PCSs and MCPCSs. In our findings, we prove that the quantum characteristics within the PCSCMs are influenced not just by the number of detected photons, denoted by variables k and l, but also by the discrepancy in photon numbers, especially by the difference of k − l.","PeriodicalId":17940,"journal":{"name":"Laser Physics Letters","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing quantum features and teleportation fidelity of two-mode non-Gaussian states using conditional measurements\",\"authors\":\"M. D. Truong, Quang Dat Tran\",\"doi\":\"10.1088/1612-202x/ad1f4e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The family of two-mode non-Gaussian entangled states, including the pair coherent states (PCSs) and their genealogies, has been extensively investigated regarding their quantum properties and their practical applications in quantum information. Specifically, certain states, such as the multiphoton catalytic pair coherent states (MCPCSs), have been newly introduced under specific experimental conditions. For a more feasible approach, in this paper, we introduce novel nonclassical states obtained by subtracting photons through conditional measurements using beam splitters applied to the two modes of the PCSs. These states are called pair coherent states with conditional measurements (PCSCMs). Our purpose is to demonstrate that the quantum features, such as entanglement, Einstein–Podolsky–Rosen (EPR) correlation, EPR steering, and the average fidelity in teleportation can be enhanced in comparison with both the original PCSs and the MCPCSs. In specific cases, several characteristics are observed in PCSCMs but not inspected in both PCSs and MCPCSs. In our findings, we prove that the quantum characteristics within the PCSCMs are influenced not just by the number of detected photons, denoted by variables k and l, but also by the discrepancy in photon numbers, especially by the difference of k − l.\",\"PeriodicalId\":17940,\"journal\":{\"name\":\"Laser Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad1f4e\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad1f4e","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

双模式非高斯纠缠态家族,包括对相干态(PCSs)及其谱系,其量子特性及其在量子信息中的实际应用已被广泛研究。具体来说,某些态,如多光子催化对相干态(MCPCSs),是在特定实验条件下新引入的。为了采用更可行的方法,我们在本文中引入了新的非经典态,通过使用分束器对多光子催化对相干态的两个模式进行条件测量,减去光子而得到这些态。这些状态被称为有条件测量的成对相干态(PCSCMs)。我们的目的是证明,与原始 PCS 和 MCPCS 相比,量子特性,如纠缠、爱因斯坦-波多尔斯基-罗森(EPR)相关性、EPR 转向和远距传物中的平均保真度都能得到增强。在特定情况下,我们在 PCSCM 中观察到了一些特性,但在 PCS 和 MCPCS 中却没有发现。我们的研究结果证明,PCSCM 中的量子特性不仅受检测到的光子数量(用变量 k 和 l 表示)的影响,还受光子数量差异的影响,尤其是 k - l 的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing quantum features and teleportation fidelity of two-mode non-Gaussian states using conditional measurements
The family of two-mode non-Gaussian entangled states, including the pair coherent states (PCSs) and their genealogies, has been extensively investigated regarding their quantum properties and their practical applications in quantum information. Specifically, certain states, such as the multiphoton catalytic pair coherent states (MCPCSs), have been newly introduced under specific experimental conditions. For a more feasible approach, in this paper, we introduce novel nonclassical states obtained by subtracting photons through conditional measurements using beam splitters applied to the two modes of the PCSs. These states are called pair coherent states with conditional measurements (PCSCMs). Our purpose is to demonstrate that the quantum features, such as entanglement, Einstein–Podolsky–Rosen (EPR) correlation, EPR steering, and the average fidelity in teleportation can be enhanced in comparison with both the original PCSs and the MCPCSs. In specific cases, several characteristics are observed in PCSCMs but not inspected in both PCSs and MCPCSs. In our findings, we prove that the quantum characteristics within the PCSCMs are influenced not just by the number of detected photons, denoted by variables k and l, but also by the discrepancy in photon numbers, especially by the difference of k − l.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Laser Physics Letters
Laser Physics Letters 物理-仪器仪表
CiteScore
3.30
自引率
11.80%
发文量
174
审稿时长
2.4 months
期刊介绍: Laser Physics Letters encompasses all aspects of laser physics sciences including, inter alia, spectroscopy, quantum electronics, quantum optics, quantum electrodynamics, nonlinear optics, atom optics, quantum computation, quantum information processing and storage, fiber optics and their applications in chemistry, biology, engineering and medicine. The full list of subject areas covered is as follows: -physics of lasers- fibre optics and fibre lasers- quantum optics and quantum information science- ultrafast optics and strong-field physics- nonlinear optics- physics of cold trapped atoms- laser methods in chemistry, biology, medicine and ecology- laser spectroscopy- novel laser materials and lasers- optics of nanomaterials- interaction of laser radiation with matter- laser interaction with solids- photonics
期刊最新文献
Vectorial manipulation of twisted vector vortex optical fields in strongly nonlocal nonlinear media Quantum metamaterials with complete graph interfaces in the ultrastrong coupling regime Picosecond laser with Yb-doped tapered low birefringent double clad fiber Classical driving-assisted quantum evolution speedup A quantum identity authentication protocol based on continuous-variable entangled light fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1