海岸红杉林中的灰葡萄孢菌对火灾的反应

Q4 Agricultural and Biological Sciences International Journal of Plant Biology Pub Date : 2024-01-24 DOI:10.3390/ijpb15010008
Damiana S. Rojas, G. Gilbert
{"title":"海岸红杉林中的灰葡萄孢菌对火灾的反应","authors":"Damiana S. Rojas, G. Gilbert","doi":"10.3390/ijpb15010008","DOIUrl":null,"url":null,"abstract":"Coast redwoods (Sequoia sempervirens) are long-lived trees that create deep shade and litter layers, and have limited recruitment from seedlings. Botrytis cinerea is an airborne fungal pathogen that attacks redwood seedlings. B. cinerea lives as a saprotroph in dead plant matter or as a necrotroph in live tissue. In the coast redwood forest, accumulated leaf litter may provide inoculum for subsequent infections, limiting redwood seedling recruitment. Here, we examine the response of B. cinerea to fire in the coast redwood forest. We measured the abundance of airborne B. cinerea spores in paired burned and unburned plots using a selective and diagnostic medium. In a greenhouse experiment, we grew seedlings in four different treatments: (1) burned soil with no leaf litter, (2) unburned soil with no leaf litter, (3) burned soil with leaf litter collected from the burn plot, (4) unburned soil with leaf litter collected from the unburned plot. Spore trapping showed no difference in the abundance of airborne spores in the paired plots. The seedling experiment showed that disease was greatest and survival lowest when grown in burned soil; leaf litter collected from burned plots reduced survival while leaf litter from not-burned plots increased survival. These results indicate that fire did not affect airborne B. cinerea and post-fire conditions did not provide favorable growth conditions for coast redwood seedlings.","PeriodicalId":38827,"journal":{"name":"International Journal of Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Response of Botrytis cinerea to Fire in a Coast Redwood Forest\",\"authors\":\"Damiana S. Rojas, G. Gilbert\",\"doi\":\"10.3390/ijpb15010008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coast redwoods (Sequoia sempervirens) are long-lived trees that create deep shade and litter layers, and have limited recruitment from seedlings. Botrytis cinerea is an airborne fungal pathogen that attacks redwood seedlings. B. cinerea lives as a saprotroph in dead plant matter or as a necrotroph in live tissue. In the coast redwood forest, accumulated leaf litter may provide inoculum for subsequent infections, limiting redwood seedling recruitment. Here, we examine the response of B. cinerea to fire in the coast redwood forest. We measured the abundance of airborne B. cinerea spores in paired burned and unburned plots using a selective and diagnostic medium. In a greenhouse experiment, we grew seedlings in four different treatments: (1) burned soil with no leaf litter, (2) unburned soil with no leaf litter, (3) burned soil with leaf litter collected from the burn plot, (4) unburned soil with leaf litter collected from the unburned plot. Spore trapping showed no difference in the abundance of airborne spores in the paired plots. The seedling experiment showed that disease was greatest and survival lowest when grown in burned soil; leaf litter collected from burned plots reduced survival while leaf litter from not-burned plots increased survival. These results indicate that fire did not affect airborne B. cinerea and post-fire conditions did not provide favorable growth conditions for coast redwood seedlings.\",\"PeriodicalId\":38827,\"journal\":{\"name\":\"International Journal of Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ijpb15010008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijpb15010008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

海岸红杉(Sequoia sempervirens)是一种寿命很长的树木,它能形成很深的树荫和枯落物层,而且从幼苗开始生长的数量有限。Botrytis cinerea 是一种空气传播的真菌病原体,会侵袭红杉幼苗。B. cinerea 以嗜渍菌的形式生活在植物死物中,或以坏死菌的形式生活在活体组织中。在海岸红杉林中,累积的落叶可能会为后续感染提供接种体,从而限制红杉幼苗的生长。在这里,我们研究了 B. cinerea 对海岸红杉林火灾的反应。我们使用一种选择性诊断培养基测量了烧毁地块和未烧毁地块中空气传播的 B. cinerea 孢子数量。在温室实验中,我们在四种不同的处理中培育幼苗:(1)无落叶的烧毁土壤;(2)无落叶的未烧毁土壤;(3)从烧毁地块收集落叶的烧毁土壤;(4)从未烧毁地块收集落叶的未烧毁土壤。孢子捕获显示,配对地块中空气传播的孢子数量没有差异。幼苗实验表明,在烧毁的土壤中生长的幼苗发病率最高,存活率最低;从烧毁的地块收集的落叶会降低存活率,而从未曾烧毁的地块收集的落叶会提高存活率。这些结果表明,火灾并没有影响空气传播的 B. cinerea,火灾后的条件也没有为海岸红杉幼苗提供有利的生长条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Response of Botrytis cinerea to Fire in a Coast Redwood Forest
Coast redwoods (Sequoia sempervirens) are long-lived trees that create deep shade and litter layers, and have limited recruitment from seedlings. Botrytis cinerea is an airborne fungal pathogen that attacks redwood seedlings. B. cinerea lives as a saprotroph in dead plant matter or as a necrotroph in live tissue. In the coast redwood forest, accumulated leaf litter may provide inoculum for subsequent infections, limiting redwood seedling recruitment. Here, we examine the response of B. cinerea to fire in the coast redwood forest. We measured the abundance of airborne B. cinerea spores in paired burned and unburned plots using a selective and diagnostic medium. In a greenhouse experiment, we grew seedlings in four different treatments: (1) burned soil with no leaf litter, (2) unburned soil with no leaf litter, (3) burned soil with leaf litter collected from the burn plot, (4) unburned soil with leaf litter collected from the unburned plot. Spore trapping showed no difference in the abundance of airborne spores in the paired plots. The seedling experiment showed that disease was greatest and survival lowest when grown in burned soil; leaf litter collected from burned plots reduced survival while leaf litter from not-burned plots increased survival. These results indicate that fire did not affect airborne B. cinerea and post-fire conditions did not provide favorable growth conditions for coast redwood seedlings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Plant Biology
International Journal of Plant Biology Agricultural and Biological Sciences-Plant Science
CiteScore
2.00
自引率
0.00%
发文量
44
审稿时长
10 weeks
期刊介绍: The International Journal of Plant Biology is an Open Access, online-only, peer-reviewed journal that considers scientific papers in all different subdisciplines of plant biology, such as physiology, molecular biology, cell biology, development, genetics, systematics, ecology, evolution, ecophysiology, plant-microbe interactions, mycology and phytopathology.
期刊最新文献
Alteration of Photosynthetic and Antioxidant Gene Expression in Sugarcane Infected by Multiple Mosaic Viruses Algal Adaptation to Environmental Stresses: Lipidomics Research Drought Stress Tolerance in Rice: Physiological and Biochemical Insights Yield and Agronomic Performance of Sweet Corn in Response to Inoculation with Azospirillum sp. under Arid Land Conditions Maize Inbred Leaf and Stalk Tissue Resistance to the Pathogen Fusarium graminearum Can Influence Control Efficacy of Beauveria bassiana towards European Corn Borers and Fall Armyworms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1