{"title":"使用利用多目标频谱差分损失函数学习的 DNN-NMF 联合模型进行语音增强","authors":"Matin Pashaian, Sanaz Seyedin","doi":"10.1049/2024/8881007","DOIUrl":null,"url":null,"abstract":"<div>\n <p>We propose a multi-objective joint model of non-negative matrix factorization (NMF) and deep neural network (DNN) with a new loss function for speech enhancement. The proposed loss function (<i>L</i><sub>MOFD</sub>) is a weighted combination of a frequency differential spectrum mean squared error (MSE)-based loss function (<i>L</i><sub>FD</sub>) and a multi-objective MSE loss function (<i>L</i><sub>MO</sub>). The conventional MSE loss function computes the discrepancy between the estimated speech and clean speech across all frequencies, disregarding the process of changing amplitude in the frequency domain which contains valuable information. The differential spectrum representation retains spectral peaks that carry important information. Using this representation helps to ensure that this information in the speech signal is reserved. Also, on the other hand, noise spectra typically have a flat shape and as the differential operation makes the flat spectral partly close to zero, the differential spectrum is resistant to noises with smooth structures. Thus, we propose using a frequency-differentiated loss function that considers the magnitude spectrum differentiations between the neighboring frequency bins in each time frame. This approach maintains the spectrum variations of the objective signal in the frequency domain, which can effectively reduce the noise deterioration effects. The multi-objective MSE term (<i>L</i><sub>MO</sub>) is a combined two-loss function related to the NMF coefficients which are the intermediate output targets, and the original spectral signals as the actual output targets. The use of encoded NMF coefficients as low-dimensional structural features for DNN serves as prior knowledge and helps the learning process. <i>L</i><sub>MO</sub> is used beside <i>L</i><sub>FD</sub> to take advantage of both the properties of the original and the differential spectrum in the training loss function. Moreover, a DNN-based noise classification and fusion strategy (NCF) is proposed to exploit a discriminative model for noise reduction. The experiments reveal the improvements of the proposed approach compared to the previous methods.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/8881007","citationCount":"0","resultStr":"{\"title\":\"Speech Enhancement Using Joint DNN-NMF Model Learned with Multi-Objective Frequency Differential Spectrum Loss Function\",\"authors\":\"Matin Pashaian, Sanaz Seyedin\",\"doi\":\"10.1049/2024/8881007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>We propose a multi-objective joint model of non-negative matrix factorization (NMF) and deep neural network (DNN) with a new loss function for speech enhancement. The proposed loss function (<i>L</i><sub>MOFD</sub>) is a weighted combination of a frequency differential spectrum mean squared error (MSE)-based loss function (<i>L</i><sub>FD</sub>) and a multi-objective MSE loss function (<i>L</i><sub>MO</sub>). The conventional MSE loss function computes the discrepancy between the estimated speech and clean speech across all frequencies, disregarding the process of changing amplitude in the frequency domain which contains valuable information. The differential spectrum representation retains spectral peaks that carry important information. Using this representation helps to ensure that this information in the speech signal is reserved. Also, on the other hand, noise spectra typically have a flat shape and as the differential operation makes the flat spectral partly close to zero, the differential spectrum is resistant to noises with smooth structures. Thus, we propose using a frequency-differentiated loss function that considers the magnitude spectrum differentiations between the neighboring frequency bins in each time frame. This approach maintains the spectrum variations of the objective signal in the frequency domain, which can effectively reduce the noise deterioration effects. The multi-objective MSE term (<i>L</i><sub>MO</sub>) is a combined two-loss function related to the NMF coefficients which are the intermediate output targets, and the original spectral signals as the actual output targets. The use of encoded NMF coefficients as low-dimensional structural features for DNN serves as prior knowledge and helps the learning process. <i>L</i><sub>MO</sub> is used beside <i>L</i><sub>FD</sub> to take advantage of both the properties of the original and the differential spectrum in the training loss function. Moreover, a DNN-based noise classification and fusion strategy (NCF) is proposed to exploit a discriminative model for noise reduction. The experiments reveal the improvements of the proposed approach compared to the previous methods.</p>\\n </div>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/8881007\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/8881007\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/8881007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Speech Enhancement Using Joint DNN-NMF Model Learned with Multi-Objective Frequency Differential Spectrum Loss Function
We propose a multi-objective joint model of non-negative matrix factorization (NMF) and deep neural network (DNN) with a new loss function for speech enhancement. The proposed loss function (LMOFD) is a weighted combination of a frequency differential spectrum mean squared error (MSE)-based loss function (LFD) and a multi-objective MSE loss function (LMO). The conventional MSE loss function computes the discrepancy between the estimated speech and clean speech across all frequencies, disregarding the process of changing amplitude in the frequency domain which contains valuable information. The differential spectrum representation retains spectral peaks that carry important information. Using this representation helps to ensure that this information in the speech signal is reserved. Also, on the other hand, noise spectra typically have a flat shape and as the differential operation makes the flat spectral partly close to zero, the differential spectrum is resistant to noises with smooth structures. Thus, we propose using a frequency-differentiated loss function that considers the magnitude spectrum differentiations between the neighboring frequency bins in each time frame. This approach maintains the spectrum variations of the objective signal in the frequency domain, which can effectively reduce the noise deterioration effects. The multi-objective MSE term (LMO) is a combined two-loss function related to the NMF coefficients which are the intermediate output targets, and the original spectral signals as the actual output targets. The use of encoded NMF coefficients as low-dimensional structural features for DNN serves as prior knowledge and helps the learning process. LMO is used beside LFD to take advantage of both the properties of the original and the differential spectrum in the training loss function. Moreover, a DNN-based noise classification and fusion strategy (NCF) is proposed to exploit a discriminative model for noise reduction. The experiments reveal the improvements of the proposed approach compared to the previous methods.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf