导电元件的一步添加式 LIFT 印刷

IF 1.4 4区 物理与天体物理 Q3 OPTICS Laser Physics Letters Pub Date : 2024-01-24 DOI:10.1088/1612-202x/ad1502
A. Nastulyavichus, Sergey Kudryashov, S. Shelygina, Evgenia Ulturgasheva, Irina Dzhun, Polina Krikunova, Тatiana Pallaeva, Pham Hong Minh, Pham Van Duong, Sergey Gonchukov
{"title":"导电元件的一步添加式 LIFT 印刷","authors":"A. Nastulyavichus, Sergey Kudryashov, S. Shelygina, Evgenia Ulturgasheva, Irina Dzhun, Polina Krikunova, Тatiana Pallaeva, Pham Hong Minh, Pham Van Duong, Sergey Gonchukov","doi":"10.1088/1612-202x/ad1502","DOIUrl":null,"url":null,"abstract":"\n The feasibility of printing silver and copper conductive elements on a glass substrate in a one- step through the laser-induced forward transfer method has been successfully demonstrated. The topography of the resulting elements was analyzed, using scanning electron microscopy. Investigation of their chemical composition was conducted by means of energy-dispersive x-ray spectroscopy and x-ray diffraction, revealing that both silver and copper in their metallic nanocrystalline state. The maximum specific conductivity of ≈6 kS cm−1 was achieved for both silver and copper at the optimal scanning speed of 3800 mm s−1, providing two-pulse printing with the laser transfer by the first pulse and laser annealing by the second one. The proposed method facilitates the technological additive printing process of conductive elements and rises its throughput.","PeriodicalId":17940,"journal":{"name":"Laser Physics Letters","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-step additive LIFT printing of conductive elements\",\"authors\":\"A. Nastulyavichus, Sergey Kudryashov, S. Shelygina, Evgenia Ulturgasheva, Irina Dzhun, Polina Krikunova, Тatiana Pallaeva, Pham Hong Minh, Pham Van Duong, Sergey Gonchukov\",\"doi\":\"10.1088/1612-202x/ad1502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The feasibility of printing silver and copper conductive elements on a glass substrate in a one- step through the laser-induced forward transfer method has been successfully demonstrated. The topography of the resulting elements was analyzed, using scanning electron microscopy. Investigation of their chemical composition was conducted by means of energy-dispersive x-ray spectroscopy and x-ray diffraction, revealing that both silver and copper in their metallic nanocrystalline state. The maximum specific conductivity of ≈6 kS cm−1 was achieved for both silver and copper at the optimal scanning speed of 3800 mm s−1, providing two-pulse printing with the laser transfer by the first pulse and laser annealing by the second one. The proposed method facilitates the technological additive printing process of conductive elements and rises its throughput.\",\"PeriodicalId\":17940,\"journal\":{\"name\":\"Laser Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad1502\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad1502","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

通过激光诱导正向转移法在玻璃基板上一步印制银和铜导电元件的可行性已得到成功验证。利用扫描电子显微镜分析了所得元件的形貌。通过能量色散 X 射线光谱法和 X 射线衍射法对其化学成分进行了研究,结果表明银和铜都处于金属纳米结晶状态。在 3800 mm s-1 的最佳扫描速度下,银和铜的最大比电导率都达到了 ≈6 kS cm-1。所提出的方法促进了导电元件的技术添加式打印过程,并提高了其产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
One-step additive LIFT printing of conductive elements
The feasibility of printing silver and copper conductive elements on a glass substrate in a one- step through the laser-induced forward transfer method has been successfully demonstrated. The topography of the resulting elements was analyzed, using scanning electron microscopy. Investigation of their chemical composition was conducted by means of energy-dispersive x-ray spectroscopy and x-ray diffraction, revealing that both silver and copper in their metallic nanocrystalline state. The maximum specific conductivity of ≈6 kS cm−1 was achieved for both silver and copper at the optimal scanning speed of 3800 mm s−1, providing two-pulse printing with the laser transfer by the first pulse and laser annealing by the second one. The proposed method facilitates the technological additive printing process of conductive elements and rises its throughput.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Laser Physics Letters
Laser Physics Letters 物理-仪器仪表
CiteScore
3.30
自引率
11.80%
发文量
174
审稿时长
2.4 months
期刊介绍: Laser Physics Letters encompasses all aspects of laser physics sciences including, inter alia, spectroscopy, quantum electronics, quantum optics, quantum electrodynamics, nonlinear optics, atom optics, quantum computation, quantum information processing and storage, fiber optics and their applications in chemistry, biology, engineering and medicine. The full list of subject areas covered is as follows: -physics of lasers- fibre optics and fibre lasers- quantum optics and quantum information science- ultrafast optics and strong-field physics- nonlinear optics- physics of cold trapped atoms- laser methods in chemistry, biology, medicine and ecology- laser spectroscopy- novel laser materials and lasers- optics of nanomaterials- interaction of laser radiation with matter- laser interaction with solids- photonics
期刊最新文献
Vectorial manipulation of twisted vector vortex optical fields in strongly nonlocal nonlinear media Quantum metamaterials with complete graph interfaces in the ultrastrong coupling regime Picosecond laser with Yb-doped tapered low birefringent double clad fiber Classical driving-assisted quantum evolution speedup A quantum identity authentication protocol based on continuous-variable entangled light fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1