{"title":"接触含有聚六亚甲基胍 (PHMG) 的加湿器消毒剂后的吸入和沉积剂量估计值","authors":"Sunju Kim, Chungsik Yoon","doi":"10.1155/2024/8815592","DOIUrl":null,"url":null,"abstract":"<p>We estimated the inhaled and deposited dose in humans using the International Commission on Radiological Protection (ICRP) and multiple-path particle dosimetry (MPPD) models following exposure to humidifier disinfectant containing polyhexamethylene guanidine (PHMG). The disinfectant has caused at least 1,810 deaths, with an odds ratio of lung injury of 47.3 (95% confidence interval: 6.1–369.7), because of its application in Korea. In this study, the Oxy product, which is regarded as the causative agent of most lung diseases, was sprayed into a cleanroom at normal (6.5 ppm in solution) and worst case (65 ppm in solution) dilutions; the airborne aerosol was monitored with direct reading instruments. Areas of deposition were divided into the head airway, tracheobronchial, and alveolar regions. Four dose scenarios were considered in this study: adults and children in both daily average and sleep conditions. Most PHMG aerosols were smaller than PM1 (96%). Number-based concentration analysis showed that <100 nm nanoparticles comprised 81% and 69% of the aerosol when the 6.5 and 65 ppm solutions were used, respectively. In all scenarios, the number-based deposited dose increased in the order of alveolar, tracheobronchial, and head airway regions; the mass-based deposited dose increased in the order of the head airway, alveolar, and tracheobronchial regions. The deposited dose per unit body weight was higher in children than in adults in terms of both number- and mass-based concentrations. When the humidifier was sprayed, the highest number-based concentration was found at a particle size of 15.4 nm; the highest deposition fraction or dose by PM1 was observed in the pulmonary and head airways in both models.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimates of Inhaled and Deposited Doses following Exposure to Humidifier Disinfectant Containing Polyhexamethylene Guanidine (PHMG)\",\"authors\":\"Sunju Kim, Chungsik Yoon\",\"doi\":\"10.1155/2024/8815592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We estimated the inhaled and deposited dose in humans using the International Commission on Radiological Protection (ICRP) and multiple-path particle dosimetry (MPPD) models following exposure to humidifier disinfectant containing polyhexamethylene guanidine (PHMG). The disinfectant has caused at least 1,810 deaths, with an odds ratio of lung injury of 47.3 (95% confidence interval: 6.1–369.7), because of its application in Korea. In this study, the Oxy product, which is regarded as the causative agent of most lung diseases, was sprayed into a cleanroom at normal (6.5 ppm in solution) and worst case (65 ppm in solution) dilutions; the airborne aerosol was monitored with direct reading instruments. Areas of deposition were divided into the head airway, tracheobronchial, and alveolar regions. Four dose scenarios were considered in this study: adults and children in both daily average and sleep conditions. Most PHMG aerosols were smaller than PM1 (96%). Number-based concentration analysis showed that <100 nm nanoparticles comprised 81% and 69% of the aerosol when the 6.5 and 65 ppm solutions were used, respectively. In all scenarios, the number-based deposited dose increased in the order of alveolar, tracheobronchial, and head airway regions; the mass-based deposited dose increased in the order of the head airway, alveolar, and tracheobronchial regions. The deposited dose per unit body weight was higher in children than in adults in terms of both number- and mass-based concentrations. When the humidifier was sprayed, the highest number-based concentration was found at a particle size of 15.4 nm; the highest deposition fraction or dose by PM1 was observed in the pulmonary and head airways in both models.</p>\",\"PeriodicalId\":13529,\"journal\":{\"name\":\"Indoor air\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor air\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/8815592\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8815592","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Estimates of Inhaled and Deposited Doses following Exposure to Humidifier Disinfectant Containing Polyhexamethylene Guanidine (PHMG)
We estimated the inhaled and deposited dose in humans using the International Commission on Radiological Protection (ICRP) and multiple-path particle dosimetry (MPPD) models following exposure to humidifier disinfectant containing polyhexamethylene guanidine (PHMG). The disinfectant has caused at least 1,810 deaths, with an odds ratio of lung injury of 47.3 (95% confidence interval: 6.1–369.7), because of its application in Korea. In this study, the Oxy product, which is regarded as the causative agent of most lung diseases, was sprayed into a cleanroom at normal (6.5 ppm in solution) and worst case (65 ppm in solution) dilutions; the airborne aerosol was monitored with direct reading instruments. Areas of deposition were divided into the head airway, tracheobronchial, and alveolar regions. Four dose scenarios were considered in this study: adults and children in both daily average and sleep conditions. Most PHMG aerosols were smaller than PM1 (96%). Number-based concentration analysis showed that <100 nm nanoparticles comprised 81% and 69% of the aerosol when the 6.5 and 65 ppm solutions were used, respectively. In all scenarios, the number-based deposited dose increased in the order of alveolar, tracheobronchial, and head airway regions; the mass-based deposited dose increased in the order of the head airway, alveolar, and tracheobronchial regions. The deposited dose per unit body weight was higher in children than in adults in terms of both number- and mass-based concentrations. When the humidifier was sprayed, the highest number-based concentration was found at a particle size of 15.4 nm; the highest deposition fraction or dose by PM1 was observed in the pulmonary and head airways in both models.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.