利用 Arduino 超声波传感器估算流量和速度的水动力模型

IF 3.1 Q2 WATER RESOURCES Hydrology Pub Date : 2024-01-23 DOI:10.3390/hydrology11020012
Tatiane Souza Rodrigues Pereira, T. P. de Carvalho, T. Mendes, Guilherme da Cruz dos Reis, K. Formiga
{"title":"利用 Arduino 超声波传感器估算流量和速度的水动力模型","authors":"Tatiane Souza Rodrigues Pereira, T. P. de Carvalho, T. Mendes, Guilherme da Cruz dos Reis, K. Formiga","doi":"10.3390/hydrology11020012","DOIUrl":null,"url":null,"abstract":"Flow is a crucial variable in water resources, although its determination is challenging. Rating curves are standard but have conceptual limitations, leading to significantly high uncertainties. Hydrodynamic models offer a more precise alternative, but they necessitate continuous measurements of velocities, which are complex and expensive to obtain. Thus, this article aimed to validate a hydrodynamic model that estimates flows and velocities in transient conditions based on water levels measured using a low-cost ultrasonic sensor. The results indicated that these estimates can be reliable if (1) hydrodynamic models are used to represent the flow, (2) the channel bed slope is well represented in the geometric data, and (3) Manning’s coefficients are accurately estimated during calibration. The calculated flow and velocity showed a maximum variation of 40% for the same water level compared to estimates using the rating curve. The model exhibited higher sensitivity in terms of the flow when varying the channel bed slope, highlighting the importance of topographic surveys for the estimates. The validity of the implemented model was assessed with experimental data, indicating precision and reliability for practical applications in natural channels.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic Modeling for Flow and Velocity Estimation from an Arduino Ultrasonic Sensor\",\"authors\":\"Tatiane Souza Rodrigues Pereira, T. P. de Carvalho, T. Mendes, Guilherme da Cruz dos Reis, K. Formiga\",\"doi\":\"10.3390/hydrology11020012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flow is a crucial variable in water resources, although its determination is challenging. Rating curves are standard but have conceptual limitations, leading to significantly high uncertainties. Hydrodynamic models offer a more precise alternative, but they necessitate continuous measurements of velocities, which are complex and expensive to obtain. Thus, this article aimed to validate a hydrodynamic model that estimates flows and velocities in transient conditions based on water levels measured using a low-cost ultrasonic sensor. The results indicated that these estimates can be reliable if (1) hydrodynamic models are used to represent the flow, (2) the channel bed slope is well represented in the geometric data, and (3) Manning’s coefficients are accurately estimated during calibration. The calculated flow and velocity showed a maximum variation of 40% for the same water level compared to estimates using the rating curve. The model exhibited higher sensitivity in terms of the flow when varying the channel bed slope, highlighting the importance of topographic surveys for the estimates. The validity of the implemented model was assessed with experimental data, indicating precision and reliability for practical applications in natural channels.\",\"PeriodicalId\":37372,\"journal\":{\"name\":\"Hydrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hydrology11020012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology11020012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

流量是水资源中的一个关键变量,但其确定却极具挑战性。定额曲线是标准的,但在概念上有局限性,导致不确定性很高。水动力模型提供了一种更精确的替代方法,但这种方法需要连续测量流速,而获取速度测量数据既复杂又昂贵。因此,本文旨在验证一种水动力模型,该模型可根据使用低成本超声波传感器测量的水位来估算瞬态条件下的流量和流速。结果表明,如果(1)使用水动力模型来表示水流,(2)在几何数据中很好地表示河床坡度,以及(3)在校准过程中准确估算曼宁系数,那么这些估算结果是可靠的。与使用定额曲线估算的结果相比,在同一水位下,计算出的流量和流速的最大变化幅度为 40%。当河床坡度发生变化时,该模型在流量方面表现出更高的灵敏度,这凸显了地形测量对估算的重要性。实验数据评估了所实施模型的有效性,表明该模型在天然河道中的实际应用具有精确性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrodynamic Modeling for Flow and Velocity Estimation from an Arduino Ultrasonic Sensor
Flow is a crucial variable in water resources, although its determination is challenging. Rating curves are standard but have conceptual limitations, leading to significantly high uncertainties. Hydrodynamic models offer a more precise alternative, but they necessitate continuous measurements of velocities, which are complex and expensive to obtain. Thus, this article aimed to validate a hydrodynamic model that estimates flows and velocities in transient conditions based on water levels measured using a low-cost ultrasonic sensor. The results indicated that these estimates can be reliable if (1) hydrodynamic models are used to represent the flow, (2) the channel bed slope is well represented in the geometric data, and (3) Manning’s coefficients are accurately estimated during calibration. The calculated flow and velocity showed a maximum variation of 40% for the same water level compared to estimates using the rating curve. The model exhibited higher sensitivity in terms of the flow when varying the channel bed slope, highlighting the importance of topographic surveys for the estimates. The validity of the implemented model was assessed with experimental data, indicating precision and reliability for practical applications in natural channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrology
Hydrology Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍: Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.
期刊最新文献
Spatiotemporal Evaluation of Water Resources in Citarum Watershed during Weak La Nina and Weak El Nino A Systematic Review of Social Sustainability Indicators for Water Use along the Agricultural Value Chain Integration of GIS and Water-Quality Index for Preliminary Assessment of Groundwater Suitability for Human Consumption and Irrigation in Semi-Arid Region Fuzzy Finite Elements Solution Describing Recession Flow in Unconfined Aquifers Analysis of the Impact of Hydraulic Gates on a Stabilized Tidal Inlet Structure: Mathematical Model and Data Measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1