用于体内髓过氧化物酶和炎症性疾病成像的近 600 纳米发射的小分子化学发光体

Tianjiao Meng, Xueru Zhang, Wei Tang, Chenghui Liu* and Xinrui Duan*, 
{"title":"用于体内髓过氧化物酶和炎症性疾病成像的近 600 纳米发射的小分子化学发光体","authors":"Tianjiao Meng,&nbsp;Xueru Zhang,&nbsp;Wei Tang,&nbsp;Chenghui Liu* and Xinrui Duan*,&nbsp;","doi":"10.1021/cbmi.3c00105","DOIUrl":null,"url":null,"abstract":"<p >Chemiluminescence has emerged as a vital tool for bioimaging in vivo. The red shift emission of chemiluminophores is extremely useful for in vivo bioimaging. In this work, the conjugation system of the luminol was extended to achieve a red-shifted emission (591 nm) along with excellent water solubility. The probe (HM-ASPH-PF) has a molecular weight of only 396.42, which contains a benzothiazole and a cyclic phthalhydrazide structure. The probe has been used for in vivo luminescence imaging of neutrophil-mediated acute liver injury, including alcoholic liver injury (ALI) and acute liver failure (ALF) in mice, by exploiting myeloperoxidase (MPO) as a biomarker. The activated neutrophils were specifically imaged by HM-ASPH-PF. HM-ASPH-PF was also successfully applied to monitor the neutrophils in livers in mouse models of ALI and ALF. Consequently, HM-ASPH-PF, as an effective luminescent small molecule that possesses a red-shift emission near 600 nm, has been applied for the detection of MPO in living cells and neutrophil-mediated acute liver injury. This work also demonstrates the applied potential of the luminescent probe for the diagnosis of other neutrophil-associated liver diseases.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 3","pages":"205–212"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00105","citationCount":"0","resultStr":"{\"title\":\"A Small Molecule Chemiluminophore with near 600 nm Emission for In Vivo Imaging of Myeloperoxidase and Inflammatory Diseases\",\"authors\":\"Tianjiao Meng,&nbsp;Xueru Zhang,&nbsp;Wei Tang,&nbsp;Chenghui Liu* and Xinrui Duan*,&nbsp;\",\"doi\":\"10.1021/cbmi.3c00105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Chemiluminescence has emerged as a vital tool for bioimaging in vivo. The red shift emission of chemiluminophores is extremely useful for in vivo bioimaging. In this work, the conjugation system of the luminol was extended to achieve a red-shifted emission (591 nm) along with excellent water solubility. The probe (HM-ASPH-PF) has a molecular weight of only 396.42, which contains a benzothiazole and a cyclic phthalhydrazide structure. The probe has been used for in vivo luminescence imaging of neutrophil-mediated acute liver injury, including alcoholic liver injury (ALI) and acute liver failure (ALF) in mice, by exploiting myeloperoxidase (MPO) as a biomarker. The activated neutrophils were specifically imaged by HM-ASPH-PF. HM-ASPH-PF was also successfully applied to monitor the neutrophils in livers in mouse models of ALI and ALF. Consequently, HM-ASPH-PF, as an effective luminescent small molecule that possesses a red-shift emission near 600 nm, has been applied for the detection of MPO in living cells and neutrophil-mediated acute liver injury. This work also demonstrates the applied potential of the luminescent probe for the diagnosis of other neutrophil-associated liver diseases.</p>\",\"PeriodicalId\":53181,\"journal\":{\"name\":\"Chemical & Biomedical Imaging\",\"volume\":\"2 3\",\"pages\":\"205–212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00105\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical & Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/cbmi.3c00105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.3c00105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

化学发光已成为体内生物成像的重要工具。化学发光体的红移发射对于体内生物成像非常有用。在这项工作中,发光酚的共轭体系得到了扩展,从而实现了红移发射(591 nm),并具有极佳的水溶性。探针(HM-ASPH-PF)的分子量仅为 396.42,含有苯并噻唑和环酞肼结构。该探针利用髓过氧化物酶(MPO)作为生物标记物,用于对中性粒细胞介导的急性肝损伤(包括酒精性肝损伤(ALI)和小鼠急性肝衰竭(ALF))进行体内发光成像。HM-ASPH-PF 可对活化的中性粒细胞进行特异性成像。HM-ASPH-PF 还成功地用于监测 ALI 和 ALF 小鼠模型肝脏中的中性粒细胞。因此,HM-ASPH-PF 作为一种在 600 纳米附近具有红移发射的有效发光小分子,已被应用于检测活细胞中的 MPO 和中性粒细胞介导的急性肝损伤。这项工作还证明了发光探针在诊断其他中性粒细胞相关肝病方面的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Small Molecule Chemiluminophore with near 600 nm Emission for In Vivo Imaging of Myeloperoxidase and Inflammatory Diseases

Chemiluminescence has emerged as a vital tool for bioimaging in vivo. The red shift emission of chemiluminophores is extremely useful for in vivo bioimaging. In this work, the conjugation system of the luminol was extended to achieve a red-shifted emission (591 nm) along with excellent water solubility. The probe (HM-ASPH-PF) has a molecular weight of only 396.42, which contains a benzothiazole and a cyclic phthalhydrazide structure. The probe has been used for in vivo luminescence imaging of neutrophil-mediated acute liver injury, including alcoholic liver injury (ALI) and acute liver failure (ALF) in mice, by exploiting myeloperoxidase (MPO) as a biomarker. The activated neutrophils were specifically imaged by HM-ASPH-PF. HM-ASPH-PF was also successfully applied to monitor the neutrophils in livers in mouse models of ALI and ALF. Consequently, HM-ASPH-PF, as an effective luminescent small molecule that possesses a red-shift emission near 600 nm, has been applied for the detection of MPO in living cells and neutrophil-mediated acute liver injury. This work also demonstrates the applied potential of the luminescent probe for the diagnosis of other neutrophil-associated liver diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical & Biomedical Imaging
Chemical & Biomedical Imaging 化学与生物成像-
CiteScore
1.00
自引率
0.00%
发文量
0
期刊介绍: Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging
期刊最新文献
Issue Editorial Masthead Issue Publication Information Issue Publication Information Issue Editorial Masthead Laser-Treated Screen-Printed Carbon Electrodes for Electrochemiluminescence imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1