Hui Jiao, Qingyuan Liu, Guanghui Zhang, Ze Lin, Jia Zhou, Yuxing Huang, Yuhong Long
{"title":"水射流引导激光切割硅的数值研究","authors":"Hui Jiao, Qingyuan Liu, Guanghui Zhang, Ze Lin, Jia Zhou, Yuxing Huang, Yuhong Long","doi":"10.2351/7.0001268","DOIUrl":null,"url":null,"abstract":"To investigate the interaction mechanism between a laser, water jet, and substrate, a model is developed to simulate the temperature field evolution and removal process during water jet-guided laser (WJGL) cutting of silicon. The model accounted for the temperature-dependent properties of the silicon absorption coefficient, as well as the physical processes of solid-liquid-gas phase change. A three-dimensional finite volume model of WJGL cutting of silicon is created, incorporating laser energy input, water jet impact-cooling, and silicon phase transition and removal. The volume of fluid (VOF) method is employed to trace the interphase interface and obtain the groove shape. The validity of the model is verified by comparing simulation results with experimental data. The simulation results show that the groove cross section is characterized by a “V” shape. The groove depth nonlinearly increases from 52 to 385 μm with an increasing number of cuts. Additionally, the residual temperature of the silicon substrate rises from 837 to 1345 K as the number of scans increases from 1 to 10. The findings offer valuable insights into WJGL cutting research, specifically shedding light on the intricate details of the laser-water jet-substrate interaction mechanism.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigations of water jet-guided laser cutting of silicon\",\"authors\":\"Hui Jiao, Qingyuan Liu, Guanghui Zhang, Ze Lin, Jia Zhou, Yuxing Huang, Yuhong Long\",\"doi\":\"10.2351/7.0001268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To investigate the interaction mechanism between a laser, water jet, and substrate, a model is developed to simulate the temperature field evolution and removal process during water jet-guided laser (WJGL) cutting of silicon. The model accounted for the temperature-dependent properties of the silicon absorption coefficient, as well as the physical processes of solid-liquid-gas phase change. A three-dimensional finite volume model of WJGL cutting of silicon is created, incorporating laser energy input, water jet impact-cooling, and silicon phase transition and removal. The volume of fluid (VOF) method is employed to trace the interphase interface and obtain the groove shape. The validity of the model is verified by comparing simulation results with experimental data. The simulation results show that the groove cross section is characterized by a “V” shape. The groove depth nonlinearly increases from 52 to 385 μm with an increasing number of cuts. Additionally, the residual temperature of the silicon substrate rises from 837 to 1345 K as the number of scans increases from 1 to 10. The findings offer valuable insights into WJGL cutting research, specifically shedding light on the intricate details of the laser-water jet-substrate interaction mechanism.\",\"PeriodicalId\":50168,\"journal\":{\"name\":\"Journal of Laser Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Laser Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2351/7.0001268\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2351/7.0001268","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical investigations of water jet-guided laser cutting of silicon
To investigate the interaction mechanism between a laser, water jet, and substrate, a model is developed to simulate the temperature field evolution and removal process during water jet-guided laser (WJGL) cutting of silicon. The model accounted for the temperature-dependent properties of the silicon absorption coefficient, as well as the physical processes of solid-liquid-gas phase change. A three-dimensional finite volume model of WJGL cutting of silicon is created, incorporating laser energy input, water jet impact-cooling, and silicon phase transition and removal. The volume of fluid (VOF) method is employed to trace the interphase interface and obtain the groove shape. The validity of the model is verified by comparing simulation results with experimental data. The simulation results show that the groove cross section is characterized by a “V” shape. The groove depth nonlinearly increases from 52 to 385 μm with an increasing number of cuts. Additionally, the residual temperature of the silicon substrate rises from 837 to 1345 K as the number of scans increases from 1 to 10. The findings offer valuable insights into WJGL cutting research, specifically shedding light on the intricate details of the laser-water jet-substrate interaction mechanism.
期刊介绍:
The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety.
The following international and well known first-class scientists serve as allocated Editors in 9 new categories:
High Precision Materials Processing with Ultrafast Lasers
Laser Additive Manufacturing
High Power Materials Processing with High Brightness Lasers
Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures
Surface Modification
Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology
Spectroscopy / Imaging / Diagnostics / Measurements
Laser Systems and Markets
Medical Applications & Safety
Thermal Transportation
Nanomaterials and Nanoprocessing
Laser applications in Microelectronics.