利用阈值矢量误差修正模型对印度尼西亚石油和油气生产数据进行建模和分析

Q2 Pharmacology, Toxicology and Pharmaceutics Science and Technology Indonesia Pub Date : 2024-01-22 DOI:10.26554/sti.2024.9.1.189-197
Widiarti Widiarti, M. Usman, A. R. Putri, E. Russel
{"title":"利用阈值矢量误差修正模型对印度尼西亚石油和油气生产数据进行建模和分析","authors":"Widiarti Widiarti, M. Usman, A. R. Putri, E. Russel","doi":"10.26554/sti.2024.9.1.189-197","DOIUrl":null,"url":null,"abstract":"Data in the fields of finance, business, economics, agriculture, the environment and weather are commonly in the form of time series data. To analyze time series data that involves more than one variable (multivariate), vector autoregressive (VAR) models, vector autoregressive moving average (VARMA) models are generally used. If the variables discussed have cointegration, then the VAR model is modified into a vector error correction model (VECM). The relationship between short-term dynamics and deviation in the VECM model is assumed to be linear. If there is a nonlinear relationship between short-term dynamics and deviation, then a threshold vector error correction model (TVECM) can be used. The variables used in this research consist of oil production and Indonesian oil and gas production from January 2019 to March 2021. The research results show that the best model for data on oil production and oil and gas production is the TVECM 2 Regime model. Based on the TVECM 2 Regime model, further analysis, namely Granger causality and Impulse Response Function are discussed.","PeriodicalId":21644,"journal":{"name":"Science and Technology Indonesia","volume":"18 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Analysis Data Production of Oil, and Oil and Gas in Indonesia by Using Threshold Vector Error Correction Model\",\"authors\":\"Widiarti Widiarti, M. Usman, A. R. Putri, E. Russel\",\"doi\":\"10.26554/sti.2024.9.1.189-197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data in the fields of finance, business, economics, agriculture, the environment and weather are commonly in the form of time series data. To analyze time series data that involves more than one variable (multivariate), vector autoregressive (VAR) models, vector autoregressive moving average (VARMA) models are generally used. If the variables discussed have cointegration, then the VAR model is modified into a vector error correction model (VECM). The relationship between short-term dynamics and deviation in the VECM model is assumed to be linear. If there is a nonlinear relationship between short-term dynamics and deviation, then a threshold vector error correction model (TVECM) can be used. The variables used in this research consist of oil production and Indonesian oil and gas production from January 2019 to March 2021. The research results show that the best model for data on oil production and oil and gas production is the TVECM 2 Regime model. Based on the TVECM 2 Regime model, further analysis, namely Granger causality and Impulse Response Function are discussed.\",\"PeriodicalId\":21644,\"journal\":{\"name\":\"Science and Technology Indonesia\",\"volume\":\"18 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26554/sti.2024.9.1.189-197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26554/sti.2024.9.1.189-197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

金融、商业、经济、农业、环境和天气等领域的数据通常是时间序列数据。要分析涉及一个以上变量(多变量)的时间序列数据,一般会使用向量自回归(VAR)模型、向量自回归移动平均(VARMA)模型。如果讨论的变量存在协整关系,则 VAR 模型会被修改为向量误差修正模型 (VECM)。在 VECM 模型中,短期动态与偏差之间的关系被假定为线性关系。如果短期动态与偏差之间存在非线性关系,则可使用阈值向量误差修正模型(TVECM)。本研究使用的变量包括 2019 年 1 月至 2021 年 3 月的石油产量和印尼石油天然气产量。研究结果表明,石油产量和石油天然气产量数据的最佳模型是 TVECM 2 Regime 模型。在 TVECM 2 时序模型的基础上,讨论了进一步的分析,即格兰杰因果关系和脉冲响应函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and Analysis Data Production of Oil, and Oil and Gas in Indonesia by Using Threshold Vector Error Correction Model
Data in the fields of finance, business, economics, agriculture, the environment and weather are commonly in the form of time series data. To analyze time series data that involves more than one variable (multivariate), vector autoregressive (VAR) models, vector autoregressive moving average (VARMA) models are generally used. If the variables discussed have cointegration, then the VAR model is modified into a vector error correction model (VECM). The relationship between short-term dynamics and deviation in the VECM model is assumed to be linear. If there is a nonlinear relationship between short-term dynamics and deviation, then a threshold vector error correction model (TVECM) can be used. The variables used in this research consist of oil production and Indonesian oil and gas production from January 2019 to March 2021. The research results show that the best model for data on oil production and oil and gas production is the TVECM 2 Regime model. Based on the TVECM 2 Regime model, further analysis, namely Granger causality and Impulse Response Function are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Technology Indonesia
Science and Technology Indonesia Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (miscellaneous)
CiteScore
1.80
自引率
0.00%
发文量
72
审稿时长
8 weeks
期刊最新文献
Modification of Indonesian Kaolinite-Based Silica Coarse (SC) for RNA Extraction Method of SARS-CoV-2 An Updated Water Masses Stratification of Indonesian Maritime Continent (IMC) Attributed to Normal and ENSO Conditions by Argo Float Anti-Inflammatory Activity and Phytochemical Profile from the Leaves of the Mangrove Sonneratia caseolaris (L.) Engl. for Future Drug Discovery Results on Toeplitz Determinants for Subclasses of Analytic Functions Associated to q-Derivative Operator LSTM-CNN Hybrid Model Performance Improvement with BioWordVec for Biomedical Report Big Data Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1