通过增量支持向量机提高手写数字字符串识别能力

Rani Kurnia Putri, Muhammad Athoillah
{"title":"通过增量支持向量机提高手写数字字符串识别能力","authors":"Rani Kurnia Putri, Muhammad Athoillah","doi":"10.59400/jam.v2i1.373","DOIUrl":null,"url":null,"abstract":"Handwritten digit recognition systems are integral to diverse applications such as postal services, banking, and document processing in our digitally-driven society. This research addresses the challenges posed by evolving datasets and dynamic scenarios in handwritten digit recognition by proposing an approach based on incremental support vector machines (ISVM). ISVM is an extension of traditional support vector machines (SVM) designed to handle scenarios where new data points become available over time. The dataset includes handwritten images (numbers “0” to “6”) and trials introducing new classes (“7”, “8”, and “9”). Evaluation utilizes k-fold cross-validation for robustness. Digital image processing involves converting images into numeric data using the histogram method. The result showed the positive outcomes of using ISVM in handwritten digit recognition, emphasizing its adaptability to incremental learning and its ability to maintain robust performance in the face of evolving datasets, which is crucial for real-world applications.","PeriodicalId":495855,"journal":{"name":"Journal of AppliedMath","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing handwritten numeric string recognition through incremental support vector machines\",\"authors\":\"Rani Kurnia Putri, Muhammad Athoillah\",\"doi\":\"10.59400/jam.v2i1.373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Handwritten digit recognition systems are integral to diverse applications such as postal services, banking, and document processing in our digitally-driven society. This research addresses the challenges posed by evolving datasets and dynamic scenarios in handwritten digit recognition by proposing an approach based on incremental support vector machines (ISVM). ISVM is an extension of traditional support vector machines (SVM) designed to handle scenarios where new data points become available over time. The dataset includes handwritten images (numbers “0” to “6”) and trials introducing new classes (“7”, “8”, and “9”). Evaluation utilizes k-fold cross-validation for robustness. Digital image processing involves converting images into numeric data using the histogram method. The result showed the positive outcomes of using ISVM in handwritten digit recognition, emphasizing its adaptability to incremental learning and its ability to maintain robust performance in the face of evolving datasets, which is crucial for real-world applications.\",\"PeriodicalId\":495855,\"journal\":{\"name\":\"Journal of AppliedMath\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of AppliedMath\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.59400/jam.v2i1.373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of AppliedMath","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.59400/jam.v2i1.373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在数字化驱动的社会中,手写数字识别系统是邮政服务、银行业务和文件处理等各种应用不可或缺的一部分。这项研究提出了一种基于增量支持向量机(ISVM)的方法,以应对手写数字识别中不断变化的数据集和动态场景所带来的挑战。ISVM 是传统支持向量机 (SVM) 的扩展,旨在处理随时间推移出现新数据点的情况。数据集包括手写图像(数字 "0 "至 "6")和引入新类别("7"、"8 "和 "9")的试验。评估采用 k 倍交叉验证,以确保稳健性。数字图像处理包括使用直方图方法将图像转换为数字数据。结果表明,在手写数字识别中使用 ISVM 取得了积极的成果,强调了 ISVM 对增量学习的适应性,以及在面对不断变化的数据集时保持稳健性能的能力,这对实际应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing handwritten numeric string recognition through incremental support vector machines
Handwritten digit recognition systems are integral to diverse applications such as postal services, banking, and document processing in our digitally-driven society. This research addresses the challenges posed by evolving datasets and dynamic scenarios in handwritten digit recognition by proposing an approach based on incremental support vector machines (ISVM). ISVM is an extension of traditional support vector machines (SVM) designed to handle scenarios where new data points become available over time. The dataset includes handwritten images (numbers “0” to “6”) and trials introducing new classes (“7”, “8”, and “9”). Evaluation utilizes k-fold cross-validation for robustness. Digital image processing involves converting images into numeric data using the histogram method. The result showed the positive outcomes of using ISVM in handwritten digit recognition, emphasizing its adaptability to incremental learning and its ability to maintain robust performance in the face of evolving datasets, which is crucial for real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Topological analysis of multiple tables Topological analysis of multiple tables Hindustani classical music revisited statistically: Does the order of Markov chain in the note dependence depend on the raga or the composition? Enhancing handwritten numeric string recognition through incremental support vector machines A logical approach to validate the Goldbach conjecture: Paper 1/3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1