电离层甚低频数据排除的机器学习分类工作流程和数据集

Data Pub Date : 2024-01-18 DOI:10.3390/data9010017
Filip Arnaut, A. Kolarski, V. Srećković
{"title":"电离层甚低频数据排除的机器学习分类工作流程和数据集","authors":"Filip Arnaut, A. Kolarski, V. Srećković","doi":"10.3390/data9010017","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) methods are commonly applied in the fields of extraterrestrial physics, space science, and plasma physics. In a prior publication, an ML classification technique, the Random Forest (RF) algorithm, was utilized to automatically identify and categorize erroneous signals, including instrument errors, noisy signals, outlier data points, and the impact of solar flares (SFs) on the ionosphere. This data communication includes the pre-processed dataset used in the aforementioned research, along with a workflow that utilizes the PyCaret library and a post-processing workflow. The code and data serve educational purposes in the interdisciplinary field of ML and ionospheric physics science, as well as being useful to other researchers for diverse objectives.","PeriodicalId":502371,"journal":{"name":"Data","volume":"105 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Classification Workflow and Datasets for Ionospheric VLF Data Exclusion\",\"authors\":\"Filip Arnaut, A. Kolarski, V. Srećković\",\"doi\":\"10.3390/data9010017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (ML) methods are commonly applied in the fields of extraterrestrial physics, space science, and plasma physics. In a prior publication, an ML classification technique, the Random Forest (RF) algorithm, was utilized to automatically identify and categorize erroneous signals, including instrument errors, noisy signals, outlier data points, and the impact of solar flares (SFs) on the ionosphere. This data communication includes the pre-processed dataset used in the aforementioned research, along with a workflow that utilizes the PyCaret library and a post-processing workflow. The code and data serve educational purposes in the interdisciplinary field of ML and ionospheric physics science, as well as being useful to other researchers for diverse objectives.\",\"PeriodicalId\":502371,\"journal\":{\"name\":\"Data\",\"volume\":\"105 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/data9010017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/data9010017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)方法通常应用于地外物理学、空间科学和等离子物理学领域。在之前发表的一篇文章中,使用了一种 ML 分类技术,即随机森林(RF)算法,来自动识别和分类错误信号,包括仪器误差、噪声信号、离群数据点以及太阳耀斑(SF)对电离层的影响。此次数据交流包括上述研究中使用的预处理数据集,以及利用 PyCaret 库的工作流程和后处理工作流程。这些代码和数据可用于 ML 和电离层物理科学跨学科领域的教育目的,也可用于其他研究人员的不同目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Classification Workflow and Datasets for Ionospheric VLF Data Exclusion
Machine learning (ML) methods are commonly applied in the fields of extraterrestrial physics, space science, and plasma physics. In a prior publication, an ML classification technique, the Random Forest (RF) algorithm, was utilized to automatically identify and categorize erroneous signals, including instrument errors, noisy signals, outlier data points, and the impact of solar flares (SFs) on the ionosphere. This data communication includes the pre-processed dataset used in the aforementioned research, along with a workflow that utilizes the PyCaret library and a post-processing workflow. The code and data serve educational purposes in the interdisciplinary field of ML and ionospheric physics science, as well as being useful to other researchers for diverse objectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SparrKULee: A Speech-Evoked Auditory Response Repository from KU Leuven, Containing the EEG of 85 Participants Bootstrap Method as a Tool for Analyzing Data with Atypical Distributions Deviating from Parametric Assumptions: Critique and Effectiveness Evaluation SaBi3d—A LiDAR Point Cloud Data Set of Car-to-Bicycle Overtaking Maneuvers Data Descriptor of Snakebites in Brazil from 2007 to 2020 Optimizing Database Performance in Complex Event Processing through Indexing Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1