{"title":"增强印迹聚(乙二醇)-脂肪酶复合物的酯化活性和热稳定性","authors":"M. Matsumoto, Yoshiro Tahara","doi":"10.15255/cabeq.2023.2205","DOIUrl":null,"url":null,"abstract":"Although the range of applications for enzymatic reactions in organic solvents is rapidly expanding, this study focused on the enzymatic activity in the esterification of lauric acid with benzyl alcohol, and thermostability of lipase using poly(ethylene glycol) (PEG)-lipase complex and molecular imprinting techniques. The catalytic activity was enhanced through molecular imprinting and the PEG-lipase complex. The imprinting operation was particularly effective for catalytic activity after forming the PEG-lipase complex. The kinetic analysis of the lipase-catalyzed esterification revealed that the increase in esterification rate with imprinted lipases was mainly due to the higher maximum rate achieved by the system. The thermostability of the lipases was significantly improved by imprinting at all temperatures (50~70 °C). After forming a PEG-lipase complex, the imprinted lipase exhibited much higher reactivity and thermostability compared to the native lipase and the imprinted PEG-lipase complex.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Esterification Activity and Thermostability of Imprinted Poly(Ethylene Glycol)-Lipase Complex\",\"authors\":\"M. Matsumoto, Yoshiro Tahara\",\"doi\":\"10.15255/cabeq.2023.2205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the range of applications for enzymatic reactions in organic solvents is rapidly expanding, this study focused on the enzymatic activity in the esterification of lauric acid with benzyl alcohol, and thermostability of lipase using poly(ethylene glycol) (PEG)-lipase complex and molecular imprinting techniques. The catalytic activity was enhanced through molecular imprinting and the PEG-lipase complex. The imprinting operation was particularly effective for catalytic activity after forming the PEG-lipase complex. The kinetic analysis of the lipase-catalyzed esterification revealed that the increase in esterification rate with imprinted lipases was mainly due to the higher maximum rate achieved by the system. The thermostability of the lipases was significantly improved by imprinting at all temperatures (50~70 °C). After forming a PEG-lipase complex, the imprinted lipase exhibited much higher reactivity and thermostability compared to the native lipase and the imprinted PEG-lipase complex.\",\"PeriodicalId\":9765,\"journal\":{\"name\":\"Chemical and Biochemical Engineering Quarterly\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biochemical Engineering Quarterly\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.15255/cabeq.2023.2205\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/cabeq.2023.2205","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Enhanced Esterification Activity and Thermostability of Imprinted Poly(Ethylene Glycol)-Lipase Complex
Although the range of applications for enzymatic reactions in organic solvents is rapidly expanding, this study focused on the enzymatic activity in the esterification of lauric acid with benzyl alcohol, and thermostability of lipase using poly(ethylene glycol) (PEG)-lipase complex and molecular imprinting techniques. The catalytic activity was enhanced through molecular imprinting and the PEG-lipase complex. The imprinting operation was particularly effective for catalytic activity after forming the PEG-lipase complex. The kinetic analysis of the lipase-catalyzed esterification revealed that the increase in esterification rate with imprinted lipases was mainly due to the higher maximum rate achieved by the system. The thermostability of the lipases was significantly improved by imprinting at all temperatures (50~70 °C). After forming a PEG-lipase complex, the imprinted lipase exhibited much higher reactivity and thermostability compared to the native lipase and the imprinted PEG-lipase complex.
期刊介绍:
The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required.
The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review).
The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing.
Editor and Editorial board make the final decision about acceptance of a manuscript.
Page charges are excluded.