通用板坯模型

IF 2.8 2区 地球科学 Q1 OCEANOGRAPHY Journal of Physical Oceanography Pub Date : 2024-01-17 DOI:10.1175/jpo-d-23-0167.1
Ian A. Stokes, Samuel M. Kelly, Andrew J. Lucas, A. Waterhouse, Caitlin B. Whalen, T. Klenz, Verena Hormann, Luca Centurioni
{"title":"通用板坯模型","authors":"Ian A. Stokes, Samuel M. Kelly, Andrew J. Lucas, A. Waterhouse, Caitlin B. Whalen, T. Klenz, Verena Hormann, Luca Centurioni","doi":"10.1175/jpo-d-23-0167.1","DOIUrl":null,"url":null,"abstract":"\nWe construct a generalized slab model to calculate the ocean’s linear response to an arbitrary, depth-variable forcing stress profile. To introduce a first-order improvement to the linear stress profile of the traditional slab model, a nonlinear stress profile which allows momentum to penetrate into the transition layer (TL) is used (denoted ‘mixed layer/transition layer,’ or MLTL stress profile). The MLTL stress profile induces a two-fold reduction in power input to inertial motions relative to the traditional slab approximation. The primary reduction arises as the TL allows momentum to be deposited over a greater depth range, reducing surface currents. The secondary reduction results from the production of turbulent kinetic energy (TKE) beneath the mixed layer (ML) related to interactions between shear stress and velocity shear. Direct comparison between observations in the Iceland Basin, the traditional slab model, the generalized slab model with the MLTL stress profile, and the Price-Weller-Pinkel (PWP) model suggest that the generalized slab model offers improved performance over a traditional slab model. In the Iceland Basin, modeled TKE production in the TL is consistent with observations of turbulent dissipation. Extension to global results via analysis of Argo profiling float data suggests that on the global, annual-mean, ∼ 30% of the total power input to near-inertial motions is allocated to TKE production. We apply this result to the latest global, annual-mean estimates for near-inertial power input (0.27 TW) to estimate that 0.08 ± 0.01 TW of the total near-inertial power input are diverted to TKE production.","PeriodicalId":56115,"journal":{"name":"Journal of Physical Oceanography","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalized slab model\",\"authors\":\"Ian A. Stokes, Samuel M. Kelly, Andrew J. Lucas, A. Waterhouse, Caitlin B. Whalen, T. Klenz, Verena Hormann, Luca Centurioni\",\"doi\":\"10.1175/jpo-d-23-0167.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nWe construct a generalized slab model to calculate the ocean’s linear response to an arbitrary, depth-variable forcing stress profile. To introduce a first-order improvement to the linear stress profile of the traditional slab model, a nonlinear stress profile which allows momentum to penetrate into the transition layer (TL) is used (denoted ‘mixed layer/transition layer,’ or MLTL stress profile). The MLTL stress profile induces a two-fold reduction in power input to inertial motions relative to the traditional slab approximation. The primary reduction arises as the TL allows momentum to be deposited over a greater depth range, reducing surface currents. The secondary reduction results from the production of turbulent kinetic energy (TKE) beneath the mixed layer (ML) related to interactions between shear stress and velocity shear. Direct comparison between observations in the Iceland Basin, the traditional slab model, the generalized slab model with the MLTL stress profile, and the Price-Weller-Pinkel (PWP) model suggest that the generalized slab model offers improved performance over a traditional slab model. In the Iceland Basin, modeled TKE production in the TL is consistent with observations of turbulent dissipation. Extension to global results via analysis of Argo profiling float data suggests that on the global, annual-mean, ∼ 30% of the total power input to near-inertial motions is allocated to TKE production. We apply this result to the latest global, annual-mean estimates for near-inertial power input (0.27 TW) to estimate that 0.08 ± 0.01 TW of the total near-inertial power input are diverted to TKE production.\",\"PeriodicalId\":56115,\"journal\":{\"name\":\"Journal of Physical Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jpo-d-23-0167.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jpo-d-23-0167.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了一个广义板块模型,用于计算海洋对任意深度可变的强迫应力剖面的线性响应。为了对传统板块模型的线性应力剖面进行一阶改进,我们采用了允许动量渗透到过渡层(TL)的非线性应力剖面(称为 "混合层/过渡层 "或 MLTL 应力剖面)。与传统的板块近似法相比,MLTL 应力曲线使惯性运动的动力输入减少了两倍。主要的减少是由于 TL 允许动量沉积在更大的深度范围内,从而减少了表面电流。其次,混合层(ML)下产生的湍流动能(TKE)与切应力和速度切变之间的相互作用有关。冰岛盆地的观测数据、传统板块模型、具有 MLTL 应力曲线的广义板块模型和普赖斯-韦勒-平克尔(PWP)模型之间的直接比较表明,广义板块模型比传统板块模型性能更好。在冰岛盆地,TL 中模拟的 TKE 产生与湍流耗散观测结果一致。通过分析阿尔戈剖面浮标数据将结果扩展到全球,表明在全球范围内,年均近惯性运动总输入功率的 30% 用于产生 TKE。我们将这一结果应用于最新的全球近惯性输入功率年均值估计值(0.27 TW),估计近惯性输入功率总量的 0.08 ± 0.01 TW 被转用于产生 TKE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A generalized slab model
We construct a generalized slab model to calculate the ocean’s linear response to an arbitrary, depth-variable forcing stress profile. To introduce a first-order improvement to the linear stress profile of the traditional slab model, a nonlinear stress profile which allows momentum to penetrate into the transition layer (TL) is used (denoted ‘mixed layer/transition layer,’ or MLTL stress profile). The MLTL stress profile induces a two-fold reduction in power input to inertial motions relative to the traditional slab approximation. The primary reduction arises as the TL allows momentum to be deposited over a greater depth range, reducing surface currents. The secondary reduction results from the production of turbulent kinetic energy (TKE) beneath the mixed layer (ML) related to interactions between shear stress and velocity shear. Direct comparison between observations in the Iceland Basin, the traditional slab model, the generalized slab model with the MLTL stress profile, and the Price-Weller-Pinkel (PWP) model suggest that the generalized slab model offers improved performance over a traditional slab model. In the Iceland Basin, modeled TKE production in the TL is consistent with observations of turbulent dissipation. Extension to global results via analysis of Argo profiling float data suggests that on the global, annual-mean, ∼ 30% of the total power input to near-inertial motions is allocated to TKE production. We apply this result to the latest global, annual-mean estimates for near-inertial power input (0.27 TW) to estimate that 0.08 ± 0.01 TW of the total near-inertial power input are diverted to TKE production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
20.00%
发文量
200
审稿时长
4.5 months
期刊介绍: The Journal of Physical Oceanography (JPO) (ISSN: 0022-3670; eISSN: 1520-0485) publishes research related to the physics of the ocean and to processes operating at its boundaries. Observational, theoretical, and modeling studies are all welcome, especially those that focus on elucidating specific physical processes. Papers that investigate interactions with other components of the Earth system (e.g., ocean–atmosphere, physical–biological, and physical–chemical interactions) as well as studies of other fluid systems (e.g., lakes and laboratory tanks) are also invited, as long as their focus is on understanding the ocean or its role in the Earth system.
期刊最新文献
Modulation of internal solitary waves by one mesoscale eddy pair west of the Luzon Strait The eastern Mediterranean boundary current: seasonality, stability, and spiral formation Tidal conversion into vertical normal modes by near-critical topography An overlooked component of the meridional overturning circulation Models of the sea-surface height expression of the internal-wave continuum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1