Jessica Ochmann, Leonard Michels, Verena Tiefenbeck, Christian Maier, Sven Laumer
{"title":"感知算法公平性:算法招聘中的透明度和拟人化实证研究","authors":"Jessica Ochmann, Leonard Michels, Verena Tiefenbeck, Christian Maier, Sven Laumer","doi":"10.1111/isj.12482","DOIUrl":null,"url":null,"abstract":"<p>Despite constant efforts of organisations to ensure a fair and transparent personnel selection process, hiring is still characterised by systematic inequality. The potential of algorithms to produce fair and objective decision outcomes has attracted the attention of academic scholars and practitioners as a conceivable alternative to human decision-making. However, applicants do not necessarily consider an objective algorithm as fairer than a human decision maker. This study examines the conditions under which applicants perceive algorithms as fair and establishes a theoretical foundation of algorithmic fairness perceptions. We further propose and investigate transparency and anthropomorphism interventions as strategies to actively shape these fairness perceptions. In an online application scenario with eight experimental groups (<i>N</i> = 801), we analyse determinants for algorithmic fairness perceptions and the impact of the proposed interventions. Embedded in a stimulus-organism-response framework and drawing from organisational justice theory, our study reveals four justice dimensions (procedural, distributive, interpersonal, informational justice) that determine algorithmic fairness perceptions. The results further show that transparency and anthropomorphism interventions mainly affect dimensions of interpersonal and informational justice, highlighting the importance of algorithmic fairness perceptions as critical determinants for individual choices.</p>","PeriodicalId":48049,"journal":{"name":"Information Systems Journal","volume":"34 2","pages":"384-414"},"PeriodicalIF":6.5000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/isj.12482","citationCount":"0","resultStr":"{\"title\":\"Perceived algorithmic fairness: An empirical study of transparency and anthropomorphism in algorithmic recruiting\",\"authors\":\"Jessica Ochmann, Leonard Michels, Verena Tiefenbeck, Christian Maier, Sven Laumer\",\"doi\":\"10.1111/isj.12482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite constant efforts of organisations to ensure a fair and transparent personnel selection process, hiring is still characterised by systematic inequality. The potential of algorithms to produce fair and objective decision outcomes has attracted the attention of academic scholars and practitioners as a conceivable alternative to human decision-making. However, applicants do not necessarily consider an objective algorithm as fairer than a human decision maker. This study examines the conditions under which applicants perceive algorithms as fair and establishes a theoretical foundation of algorithmic fairness perceptions. We further propose and investigate transparency and anthropomorphism interventions as strategies to actively shape these fairness perceptions. In an online application scenario with eight experimental groups (<i>N</i> = 801), we analyse determinants for algorithmic fairness perceptions and the impact of the proposed interventions. Embedded in a stimulus-organism-response framework and drawing from organisational justice theory, our study reveals four justice dimensions (procedural, distributive, interpersonal, informational justice) that determine algorithmic fairness perceptions. The results further show that transparency and anthropomorphism interventions mainly affect dimensions of interpersonal and informational justice, highlighting the importance of algorithmic fairness perceptions as critical determinants for individual choices.</p>\",\"PeriodicalId\":48049,\"journal\":{\"name\":\"Information Systems Journal\",\"volume\":\"34 2\",\"pages\":\"384-414\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/isj.12482\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems Journal\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/isj.12482\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems Journal","FirstCategoryId":"91","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/isj.12482","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
Perceived algorithmic fairness: An empirical study of transparency and anthropomorphism in algorithmic recruiting
Despite constant efforts of organisations to ensure a fair and transparent personnel selection process, hiring is still characterised by systematic inequality. The potential of algorithms to produce fair and objective decision outcomes has attracted the attention of academic scholars and practitioners as a conceivable alternative to human decision-making. However, applicants do not necessarily consider an objective algorithm as fairer than a human decision maker. This study examines the conditions under which applicants perceive algorithms as fair and establishes a theoretical foundation of algorithmic fairness perceptions. We further propose and investigate transparency and anthropomorphism interventions as strategies to actively shape these fairness perceptions. In an online application scenario with eight experimental groups (N = 801), we analyse determinants for algorithmic fairness perceptions and the impact of the proposed interventions. Embedded in a stimulus-organism-response framework and drawing from organisational justice theory, our study reveals four justice dimensions (procedural, distributive, interpersonal, informational justice) that determine algorithmic fairness perceptions. The results further show that transparency and anthropomorphism interventions mainly affect dimensions of interpersonal and informational justice, highlighting the importance of algorithmic fairness perceptions as critical determinants for individual choices.
期刊介绍:
The Information Systems Journal (ISJ) is an international journal promoting the study of, and interest in, information systems. Articles are welcome on research, practice, experience, current issues and debates. The ISJ encourages submissions that reflect the wide and interdisciplinary nature of the subject and articles that integrate technological disciplines with social, contextual and management issues, based on research using appropriate research methods.The ISJ has particularly built its reputation by publishing qualitative research and it continues to welcome such papers. Quantitative research papers are also welcome but they need to emphasise the context of the research and the theoretical and practical implications of their findings.The ISJ does not publish purely technical papers.