锆合金抗氧化涂层的微观结构和高温氧化行为:概述

IF 2.4 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Surface Engineering Pub Date : 2024-01-15 DOI:10.1177/02670844231214692
Luyu Chen, Tao Fu, Yingyi Zhang, Hong Wang, Shinan Li
{"title":"锆合金抗氧化涂层的微观结构和高温氧化行为:概述","authors":"Luyu Chen, Tao Fu, Yingyi Zhang, Hong Wang, Shinan Li","doi":"10.1177/02670844231214692","DOIUrl":null,"url":null,"abstract":"Due to the rapid development of the nuclear industry, zirconium alloys have received more and more attention as accident-tolerant fuel for nuclear reactors. However, the oxidation rate of zirconium alloy fuel coating will increase rapidly in the high-temperature environment above 1000 °C, which leads to a catastrophic nuclear leakage event. The corrosion resistance of zirconium alloy can be significantly improved through the surface coating technology. In this work, the microstructure and phase composition evolutions of chromium coating, composite coating, multilayer coating and MAX phase coating before and after oxidation are introduced. In addition, the oxidation behaviour and failure mechanism of the surface coating of zirconium alloy were analysed and summarised. Finally, the main problems and challenges of coating on the zirconium alloy surface are summarised and prospected.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and high-temperature oxidation behaviour of anti-oxidation coating on zirconium alloys: An overview\",\"authors\":\"Luyu Chen, Tao Fu, Yingyi Zhang, Hong Wang, Shinan Li\",\"doi\":\"10.1177/02670844231214692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the rapid development of the nuclear industry, zirconium alloys have received more and more attention as accident-tolerant fuel for nuclear reactors. However, the oxidation rate of zirconium alloy fuel coating will increase rapidly in the high-temperature environment above 1000 °C, which leads to a catastrophic nuclear leakage event. The corrosion resistance of zirconium alloy can be significantly improved through the surface coating technology. In this work, the microstructure and phase composition evolutions of chromium coating, composite coating, multilayer coating and MAX phase coating before and after oxidation are introduced. In addition, the oxidation behaviour and failure mechanism of the surface coating of zirconium alloy were analysed and summarised. Finally, the main problems and challenges of coating on the zirconium alloy surface are summarised and prospected.\",\"PeriodicalId\":21995,\"journal\":{\"name\":\"Surface Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/02670844231214692\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/02670844231214692","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

随着核工业的快速发展,锆合金作为核反应堆的事故耐受燃料受到越来越多的关注。然而,在 1000 °C 以上的高温环境中,锆合金燃料涂层的氧化率会迅速增加,从而导致灾难性的核泄漏事件。通过表面涂层技术可以显著提高锆合金的耐腐蚀性。本研究介绍了铬涂层、复合涂层、多层涂层和 MAX 相涂层在氧化前后的微观结构和相组成演变。此外,还分析和总结了锆合金表面涂层的氧化行为和失效机理。最后,对锆合金表面涂层的主要问题和挑战进行了总结和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microstructure and high-temperature oxidation behaviour of anti-oxidation coating on zirconium alloys: An overview
Due to the rapid development of the nuclear industry, zirconium alloys have received more and more attention as accident-tolerant fuel for nuclear reactors. However, the oxidation rate of zirconium alloy fuel coating will increase rapidly in the high-temperature environment above 1000 °C, which leads to a catastrophic nuclear leakage event. The corrosion resistance of zirconium alloy can be significantly improved through the surface coating technology. In this work, the microstructure and phase composition evolutions of chromium coating, composite coating, multilayer coating and MAX phase coating before and after oxidation are introduced. In addition, the oxidation behaviour and failure mechanism of the surface coating of zirconium alloy were analysed and summarised. Finally, the main problems and challenges of coating on the zirconium alloy surface are summarised and prospected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Engineering
Surface Engineering 工程技术-材料科学:膜
CiteScore
5.60
自引率
14.30%
发文量
51
审稿时长
2.3 months
期刊介绍: Surface Engineering provides a forum for the publication of refereed material on both the theory and practice of this important enabling technology, embracing science, technology and engineering. Coverage includes design, surface modification technologies and process control, and the characterisation and properties of the final system or component, including quality control and non-destructive examination.
期刊最新文献
Oil-infused surface on galvanized iron pipes for anti-scaling in industrial applications Surface modification of polyester fabrics using choline hydroxide-catalysed glycolysis Surface modification of cotton The evolution and future of polymer cold spray technology A novel approach of thick coating through selective jet electrodeposition process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1