激光粉末床熔融制造 AlSi10Mg 薄管的激光冲击强化机器学习方法

IF 2.4 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Surface Engineering Pub Date : 2024-01-15 DOI:10.1177/02670844231221974
Ondřej Stránský, Ivan Tarant, L. Beránek, František Holešovský, Sunil Pathak, J. Brajer, Tomáš Mocek, O. Denk
{"title":"激光粉末床熔融制造 AlSi10Mg 薄管的激光冲击强化机器学习方法","authors":"Ondřej Stránský, Ivan Tarant, L. Beránek, František Holešovský, Sunil Pathak, J. Brajer, Tomáš Mocek, O. Denk","doi":"10.1177/02670844231221974","DOIUrl":null,"url":null,"abstract":"The industry's demand for intricate geometries has spurred research into additive manufacturing (AM). Customising material properties, including surface roughness, integrity and porosity reduction, are the key industrial goals. This necessitates a holistic approach integrating AM, laser shock peening (LSP) and non-planar geometry considerations. In this study, machine learning and neural networks offer a novel way to create intricate, abstract models capable of discerning complex process relationships. Our focus is on leveraging the certain range of laser parameters (energy, spot area, overlap) to identify optimal residual stress, average surface roughness, and porosity values. Confirmatory experiments demonstrate close agreement, with an 8% discrepancy between modelled and actual residual stress values. This approach's viability is evident even with limited datasets, provided proper precautions are taken.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning approach towards laser powder bed fusion manufactured AlSi10Mg thin tubes in laser shock peening\",\"authors\":\"Ondřej Stránský, Ivan Tarant, L. Beránek, František Holešovský, Sunil Pathak, J. Brajer, Tomáš Mocek, O. Denk\",\"doi\":\"10.1177/02670844231221974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The industry's demand for intricate geometries has spurred research into additive manufacturing (AM). Customising material properties, including surface roughness, integrity and porosity reduction, are the key industrial goals. This necessitates a holistic approach integrating AM, laser shock peening (LSP) and non-planar geometry considerations. In this study, machine learning and neural networks offer a novel way to create intricate, abstract models capable of discerning complex process relationships. Our focus is on leveraging the certain range of laser parameters (energy, spot area, overlap) to identify optimal residual stress, average surface roughness, and porosity values. Confirmatory experiments demonstrate close agreement, with an 8% discrepancy between modelled and actual residual stress values. This approach's viability is evident even with limited datasets, provided proper precautions are taken.\",\"PeriodicalId\":21995,\"journal\":{\"name\":\"Surface Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/02670844231221974\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/02670844231221974","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

工业对复杂几何形状的需求刺激了对快速成型制造(AM)的研究。定制材料特性(包括表面粗糙度、完整性和减少孔隙率)是关键的工业目标。这就需要一种将 AM、激光冲击强化(LSP)和非平面几何考虑在内的整体方法。在这项研究中,机器学习和神经网络提供了一种创建复杂抽象模型的新方法,能够辨别复杂的工艺关系。我们的重点是利用特定范围的激光参数(能量、光斑面积、重叠度)来确定最佳残余应力、平均表面粗糙度和孔隙率值。确认实验表明,两者之间的一致性非常接近,模拟值和实际残余应力值之间的差异仅为 8%。只要采取适当的预防措施,即使数据集有限,这种方法的可行性也是显而易见的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning approach towards laser powder bed fusion manufactured AlSi10Mg thin tubes in laser shock peening
The industry's demand for intricate geometries has spurred research into additive manufacturing (AM). Customising material properties, including surface roughness, integrity and porosity reduction, are the key industrial goals. This necessitates a holistic approach integrating AM, laser shock peening (LSP) and non-planar geometry considerations. In this study, machine learning and neural networks offer a novel way to create intricate, abstract models capable of discerning complex process relationships. Our focus is on leveraging the certain range of laser parameters (energy, spot area, overlap) to identify optimal residual stress, average surface roughness, and porosity values. Confirmatory experiments demonstrate close agreement, with an 8% discrepancy between modelled and actual residual stress values. This approach's viability is evident even with limited datasets, provided proper precautions are taken.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Engineering
Surface Engineering 工程技术-材料科学:膜
CiteScore
5.60
自引率
14.30%
发文量
51
审稿时长
2.3 months
期刊介绍: Surface Engineering provides a forum for the publication of refereed material on both the theory and practice of this important enabling technology, embracing science, technology and engineering. Coverage includes design, surface modification technologies and process control, and the characterisation and properties of the final system or component, including quality control and non-destructive examination.
期刊最新文献
Oil-infused surface on galvanized iron pipes for anti-scaling in industrial applications Surface modification of polyester fabrics using choline hydroxide-catalysed glycolysis Surface modification of cotton The evolution and future of polymer cold spray technology A novel approach of thick coating through selective jet electrodeposition process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1