基于数字技术的新能源汽车热泵空调系统能耗模型研究

Jingling Qin
{"title":"基于数字技术的新能源汽车热泵空调系统能耗模型研究","authors":"Jingling Qin","doi":"10.13052/spee1048-5236.4326","DOIUrl":null,"url":null,"abstract":"Energy shortages and environmental degradation are issues that are getting more and more significant globally. New energy vehicles are being promoted by the state due to the advantages of low pollution and low fuel consumption. However, due to battery technology, the range of new energy vehicles cannot meet the needs of users. As the most energy-efficient auxiliary device, the energy consumption of air conditioning will significantly reduce the range of new energy vehicles. In low temperature environments, heating energy consumption will reduce the range of vehicles by more than 50%. Therefore, the research aims to reduce the energy consumption of air conditioning systems in new energy vehicles by reducing load demand and improving operating efficiency. The study designs a low-temperature heat pump air conditioning system based on digital technology and then uses a computational algorithm to construct an energy consumption model for the heat pump air conditioning system of a new energy vehicle. According to the test results, the system’s average increase in heat production after activating the enthalpy charge is 35% and its average COP is 0.14% lower than when switched off. At -5oC, the air outlet temperature of the system reaches up to 50.0oC. Summer cooling energy consumption increases exponentially with temperature, while winter heating energy consumption decreases linearly with temperature. In addition, the range decreases significantly as the ambient temperature deviates from the human comfort zone. The decline in the winter range is more severe than that in summer, moreover, the range of modern energy vehicles is reduced by 30% at an average winter temperature of -10oC. In summary, the low-temperature heat pump system offers greater performance. It is more useful in real-world applications and can offer a rational alternative to air conditioning’s energy-saving tactics.","PeriodicalId":35712,"journal":{"name":"Strategic Planning for Energy and the Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Energy Consumption Model of Heat Pump Air Conditioning System for New Energy Vehicles Based on Digital Technology\",\"authors\":\"Jingling Qin\",\"doi\":\"10.13052/spee1048-5236.4326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy shortages and environmental degradation are issues that are getting more and more significant globally. New energy vehicles are being promoted by the state due to the advantages of low pollution and low fuel consumption. However, due to battery technology, the range of new energy vehicles cannot meet the needs of users. As the most energy-efficient auxiliary device, the energy consumption of air conditioning will significantly reduce the range of new energy vehicles. In low temperature environments, heating energy consumption will reduce the range of vehicles by more than 50%. Therefore, the research aims to reduce the energy consumption of air conditioning systems in new energy vehicles by reducing load demand and improving operating efficiency. The study designs a low-temperature heat pump air conditioning system based on digital technology and then uses a computational algorithm to construct an energy consumption model for the heat pump air conditioning system of a new energy vehicle. According to the test results, the system’s average increase in heat production after activating the enthalpy charge is 35% and its average COP is 0.14% lower than when switched off. At -5oC, the air outlet temperature of the system reaches up to 50.0oC. Summer cooling energy consumption increases exponentially with temperature, while winter heating energy consumption decreases linearly with temperature. In addition, the range decreases significantly as the ambient temperature deviates from the human comfort zone. The decline in the winter range is more severe than that in summer, moreover, the range of modern energy vehicles is reduced by 30% at an average winter temperature of -10oC. In summary, the low-temperature heat pump system offers greater performance. It is more useful in real-world applications and can offer a rational alternative to air conditioning’s energy-saving tactics.\",\"PeriodicalId\":35712,\"journal\":{\"name\":\"Strategic Planning for Energy and the Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strategic Planning for Energy and the Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/spee1048-5236.4326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strategic Planning for Energy and the Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/spee1048-5236.4326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

能源短缺和环境恶化是全球日益突出的问题。新能源汽车因其低污染、低油耗等优势,正在被国家大力推广。然而,由于电池技术的原因,新能源汽车的续航能力无法满足用户的需求。空调作为最节能的辅助设备,其能耗将大大降低新能源汽车的续航里程。在低温环境下,制热能耗将使车辆续航里程减少 50%以上。因此,该研究旨在通过降低负载需求和提高运行效率来降低新能源汽车空调系统的能耗。该研究设计了一种基于数字技术的低温热泵空调系统,然后利用计算算法构建了新能源汽车热泵空调系统的能耗模型。测试结果表明,启动焓充后,系统制热量平均增加 35%,平均 COP 比关闭时降低 0.14%。在零下 5 摄氏度时,系统的空气出口温度高达 50.0 摄氏度。夏季制冷能耗随温度呈指数增长,而冬季制热能耗则随温度呈线性下降。此外,当环境温度偏离人体舒适区时,能耗范围也会明显缩小。冬季续航里程的下降比夏季更为严重,此外,在冬季平均温度为零下 10 摄氏度时,现代能源汽车的续航里程会减少 30%。总之,低温热泵系统具有更高的性能。在实际应用中,它的作用更大,可以合理替代空调的节能策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Energy Consumption Model of Heat Pump Air Conditioning System for New Energy Vehicles Based on Digital Technology
Energy shortages and environmental degradation are issues that are getting more and more significant globally. New energy vehicles are being promoted by the state due to the advantages of low pollution and low fuel consumption. However, due to battery technology, the range of new energy vehicles cannot meet the needs of users. As the most energy-efficient auxiliary device, the energy consumption of air conditioning will significantly reduce the range of new energy vehicles. In low temperature environments, heating energy consumption will reduce the range of vehicles by more than 50%. Therefore, the research aims to reduce the energy consumption of air conditioning systems in new energy vehicles by reducing load demand and improving operating efficiency. The study designs a low-temperature heat pump air conditioning system based on digital technology and then uses a computational algorithm to construct an energy consumption model for the heat pump air conditioning system of a new energy vehicle. According to the test results, the system’s average increase in heat production after activating the enthalpy charge is 35% and its average COP is 0.14% lower than when switched off. At -5oC, the air outlet temperature of the system reaches up to 50.0oC. Summer cooling energy consumption increases exponentially with temperature, while winter heating energy consumption decreases linearly with temperature. In addition, the range decreases significantly as the ambient temperature deviates from the human comfort zone. The decline in the winter range is more severe than that in summer, moreover, the range of modern energy vehicles is reduced by 30% at an average winter temperature of -10oC. In summary, the low-temperature heat pump system offers greater performance. It is more useful in real-world applications and can offer a rational alternative to air conditioning’s energy-saving tactics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Strategic Planning for Energy and the Environment
Strategic Planning for Energy and the Environment Environmental Science-Environmental Science (all)
CiteScore
1.50
自引率
0.00%
发文量
25
期刊最新文献
Application of Digital Economy Machine Learning Algorithm for Predicting Carbon Trading Prices Under Carbon Reduction Trends Low-Carbon Economic Dispatch of Integrated Energy Systems in Multi-Form Energy-intensive Parks Based on the ICT-GRU Prediction Model Installation Technique and Numerical Simulation of Stress on High-Pile Footings During the Translation of Offshore Booster Stations Analysis of the Factors Affecting the Logistics Efficiency of Urban Farm Products in the Context of Low-carbon Economy The Relationship Between Green Finance, Sustainable Technological Innovation and Energy Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1