{"title":"基于数字技术的新能源汽车热泵空调系统能耗模型研究","authors":"Jingling Qin","doi":"10.13052/spee1048-5236.4326","DOIUrl":null,"url":null,"abstract":"Energy shortages and environmental degradation are issues that are getting more and more significant globally. New energy vehicles are being promoted by the state due to the advantages of low pollution and low fuel consumption. However, due to battery technology, the range of new energy vehicles cannot meet the needs of users. As the most energy-efficient auxiliary device, the energy consumption of air conditioning will significantly reduce the range of new energy vehicles. In low temperature environments, heating energy consumption will reduce the range of vehicles by more than 50%. Therefore, the research aims to reduce the energy consumption of air conditioning systems in new energy vehicles by reducing load demand and improving operating efficiency. The study designs a low-temperature heat pump air conditioning system based on digital technology and then uses a computational algorithm to construct an energy consumption model for the heat pump air conditioning system of a new energy vehicle. According to the test results, the system’s average increase in heat production after activating the enthalpy charge is 35% and its average COP is 0.14% lower than when switched off. At -5oC, the air outlet temperature of the system reaches up to 50.0oC. Summer cooling energy consumption increases exponentially with temperature, while winter heating energy consumption decreases linearly with temperature. In addition, the range decreases significantly as the ambient temperature deviates from the human comfort zone. The decline in the winter range is more severe than that in summer, moreover, the range of modern energy vehicles is reduced by 30% at an average winter temperature of -10oC. In summary, the low-temperature heat pump system offers greater performance. It is more useful in real-world applications and can offer a rational alternative to air conditioning’s energy-saving tactics.","PeriodicalId":35712,"journal":{"name":"Strategic Planning for Energy and the Environment","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Energy Consumption Model of Heat Pump Air Conditioning System for New Energy Vehicles Based on Digital Technology\",\"authors\":\"Jingling Qin\",\"doi\":\"10.13052/spee1048-5236.4326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy shortages and environmental degradation are issues that are getting more and more significant globally. New energy vehicles are being promoted by the state due to the advantages of low pollution and low fuel consumption. However, due to battery technology, the range of new energy vehicles cannot meet the needs of users. As the most energy-efficient auxiliary device, the energy consumption of air conditioning will significantly reduce the range of new energy vehicles. In low temperature environments, heating energy consumption will reduce the range of vehicles by more than 50%. Therefore, the research aims to reduce the energy consumption of air conditioning systems in new energy vehicles by reducing load demand and improving operating efficiency. The study designs a low-temperature heat pump air conditioning system based on digital technology and then uses a computational algorithm to construct an energy consumption model for the heat pump air conditioning system of a new energy vehicle. According to the test results, the system’s average increase in heat production after activating the enthalpy charge is 35% and its average COP is 0.14% lower than when switched off. At -5oC, the air outlet temperature of the system reaches up to 50.0oC. Summer cooling energy consumption increases exponentially with temperature, while winter heating energy consumption decreases linearly with temperature. In addition, the range decreases significantly as the ambient temperature deviates from the human comfort zone. The decline in the winter range is more severe than that in summer, moreover, the range of modern energy vehicles is reduced by 30% at an average winter temperature of -10oC. In summary, the low-temperature heat pump system offers greater performance. It is more useful in real-world applications and can offer a rational alternative to air conditioning’s energy-saving tactics.\",\"PeriodicalId\":35712,\"journal\":{\"name\":\"Strategic Planning for Energy and the Environment\",\"volume\":\" 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strategic Planning for Energy and the Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/spee1048-5236.4326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strategic Planning for Energy and the Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/spee1048-5236.4326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Research on Energy Consumption Model of Heat Pump Air Conditioning System for New Energy Vehicles Based on Digital Technology
Energy shortages and environmental degradation are issues that are getting more and more significant globally. New energy vehicles are being promoted by the state due to the advantages of low pollution and low fuel consumption. However, due to battery technology, the range of new energy vehicles cannot meet the needs of users. As the most energy-efficient auxiliary device, the energy consumption of air conditioning will significantly reduce the range of new energy vehicles. In low temperature environments, heating energy consumption will reduce the range of vehicles by more than 50%. Therefore, the research aims to reduce the energy consumption of air conditioning systems in new energy vehicles by reducing load demand and improving operating efficiency. The study designs a low-temperature heat pump air conditioning system based on digital technology and then uses a computational algorithm to construct an energy consumption model for the heat pump air conditioning system of a new energy vehicle. According to the test results, the system’s average increase in heat production after activating the enthalpy charge is 35% and its average COP is 0.14% lower than when switched off. At -5oC, the air outlet temperature of the system reaches up to 50.0oC. Summer cooling energy consumption increases exponentially with temperature, while winter heating energy consumption decreases linearly with temperature. In addition, the range decreases significantly as the ambient temperature deviates from the human comfort zone. The decline in the winter range is more severe than that in summer, moreover, the range of modern energy vehicles is reduced by 30% at an average winter temperature of -10oC. In summary, the low-temperature heat pump system offers greater performance. It is more useful in real-world applications and can offer a rational alternative to air conditioning’s energy-saving tactics.