冲击载荷下永磁涡流制动器的分析方法

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Applied Electromagnetics and Mechanics Pub Date : 2024-01-12 DOI:10.3233/jae-220194
Yanping Shen, Ning Liu, Mingliang Sun, Biao-biao Wang, Yuxia Liang
{"title":"冲击载荷下永磁涡流制动器的分析方法","authors":"Yanping Shen, Ning Liu, Mingliang Sun, Biao-biao Wang, Yuxia Liang","doi":"10.3233/jae-220194","DOIUrl":null,"url":null,"abstract":"Permanent magnet eddy current brake (PMECB) with high damping performance is widely used in engineering vibration suppression and braking. In this study, based on the braking dynamics of PMECB under impact load, the analysis method related to the damping characteristics are established, including a static magnetic model with flux leakage, a uniform damping force model with demagnetization effect and skin effect, and an acceleration damping force model with magnetic field distortion. The comparison of the analysis method, numerical simulation and experimental results verifies that the analysis method can reproduce the damping law under impact load. The results show that the maximum displacements of the analysis method and numerical simulation deviate from the experimental results within 3%. The analysis method can complete the calculation of the damping characteristics within a few seconds. The variations of the thickness, conductivity of the conductive cylinder, and air gap thickness have significant effects on the nonlinear and critical characteristics of the velocity-damping force curve, which can be corrected by changing the coefficients in the analysis method. In summary, the proposed analysis method can provide insights for rapid engineering design and optimization calculation of the PMECB by its completeness, accuracy, adaptability and rapidity.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis method of permanent magnet eddy current brake under impact load\",\"authors\":\"Yanping Shen, Ning Liu, Mingliang Sun, Biao-biao Wang, Yuxia Liang\",\"doi\":\"10.3233/jae-220194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Permanent magnet eddy current brake (PMECB) with high damping performance is widely used in engineering vibration suppression and braking. In this study, based on the braking dynamics of PMECB under impact load, the analysis method related to the damping characteristics are established, including a static magnetic model with flux leakage, a uniform damping force model with demagnetization effect and skin effect, and an acceleration damping force model with magnetic field distortion. The comparison of the analysis method, numerical simulation and experimental results verifies that the analysis method can reproduce the damping law under impact load. The results show that the maximum displacements of the analysis method and numerical simulation deviate from the experimental results within 3%. The analysis method can complete the calculation of the damping characteristics within a few seconds. The variations of the thickness, conductivity of the conductive cylinder, and air gap thickness have significant effects on the nonlinear and critical characteristics of the velocity-damping force curve, which can be corrected by changing the coefficients in the analysis method. In summary, the proposed analysis method can provide insights for rapid engineering design and optimization calculation of the PMECB by its completeness, accuracy, adaptability and rapidity.\",\"PeriodicalId\":50340,\"journal\":{\"name\":\"International Journal of Applied Electromagnetics and Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-220194\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-220194","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

具有高阻尼性能的永磁涡流制动器(PMECB)被广泛应用于工程振动抑制和制动领域。本研究基于 PMECB 在冲击载荷下的制动动力学特性,建立了与阻尼特性相关的分析方法,包括磁通泄漏的静态磁力模型、退磁效应和集肤效应的均匀阻尼力模型以及磁场畸变的加速阻尼力模型。分析方法、数值模拟和实验结果的对比验证了分析方法能够再现冲击载荷下的阻尼规律。结果表明,分析方法和数值模拟的最大位移与实验结果的偏差在 3% 以内。分析方法可以在几秒钟内完成阻尼特性的计算。厚度、导电圆筒的电导率和气隙厚度的变化对速度-阻尼力曲线的非线性和临界特性有显著影响,可以通过改变分析方法中的系数来修正。总之,所提出的分析方法具有完整性、准确性、适应性和快速性,可为 PMECB 的快速工程设计和优化计算提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis method of permanent magnet eddy current brake under impact load
Permanent magnet eddy current brake (PMECB) with high damping performance is widely used in engineering vibration suppression and braking. In this study, based on the braking dynamics of PMECB under impact load, the analysis method related to the damping characteristics are established, including a static magnetic model with flux leakage, a uniform damping force model with demagnetization effect and skin effect, and an acceleration damping force model with magnetic field distortion. The comparison of the analysis method, numerical simulation and experimental results verifies that the analysis method can reproduce the damping law under impact load. The results show that the maximum displacements of the analysis method and numerical simulation deviate from the experimental results within 3%. The analysis method can complete the calculation of the damping characteristics within a few seconds. The variations of the thickness, conductivity of the conductive cylinder, and air gap thickness have significant effects on the nonlinear and critical characteristics of the velocity-damping force curve, which can be corrected by changing the coefficients in the analysis method. In summary, the proposed analysis method can provide insights for rapid engineering design and optimization calculation of the PMECB by its completeness, accuracy, adaptability and rapidity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
4.6 months
期刊介绍: The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are: Physics and mechanics of electromagnetic materials and devices Computational electromagnetics in materials and devices Applications of electromagnetic fields and materials The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics. The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.
期刊最新文献
Optimization design of the modified SST based on adaptive genetic algorithm Influence of key design parameters on the critical speed of eddy current brake Numerical simulation of contact surface stress distribution based on stress-magnetization effect surface Optimization design and measurement of septum magnet with low leakage field Multi-objective optimization of permanent magnet motor based on Improved Salp Swarm Algorithm and Spearman correlation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1