Yanping Shen, Ning Liu, Mingliang Sun, Biao-biao Wang, Yuxia Liang
{"title":"冲击载荷下永磁涡流制动器的分析方法","authors":"Yanping Shen, Ning Liu, Mingliang Sun, Biao-biao Wang, Yuxia Liang","doi":"10.3233/jae-220194","DOIUrl":null,"url":null,"abstract":"Permanent magnet eddy current brake (PMECB) with high damping performance is widely used in engineering vibration suppression and braking. In this study, based on the braking dynamics of PMECB under impact load, the analysis method related to the damping characteristics are established, including a static magnetic model with flux leakage, a uniform damping force model with demagnetization effect and skin effect, and an acceleration damping force model with magnetic field distortion. The comparison of the analysis method, numerical simulation and experimental results verifies that the analysis method can reproduce the damping law under impact load. The results show that the maximum displacements of the analysis method and numerical simulation deviate from the experimental results within 3%. The analysis method can complete the calculation of the damping characteristics within a few seconds. The variations of the thickness, conductivity of the conductive cylinder, and air gap thickness have significant effects on the nonlinear and critical characteristics of the velocity-damping force curve, which can be corrected by changing the coefficients in the analysis method. In summary, the proposed analysis method can provide insights for rapid engineering design and optimization calculation of the PMECB by its completeness, accuracy, adaptability and rapidity.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis method of permanent magnet eddy current brake under impact load\",\"authors\":\"Yanping Shen, Ning Liu, Mingliang Sun, Biao-biao Wang, Yuxia Liang\",\"doi\":\"10.3233/jae-220194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Permanent magnet eddy current brake (PMECB) with high damping performance is widely used in engineering vibration suppression and braking. In this study, based on the braking dynamics of PMECB under impact load, the analysis method related to the damping characteristics are established, including a static magnetic model with flux leakage, a uniform damping force model with demagnetization effect and skin effect, and an acceleration damping force model with magnetic field distortion. The comparison of the analysis method, numerical simulation and experimental results verifies that the analysis method can reproduce the damping law under impact load. The results show that the maximum displacements of the analysis method and numerical simulation deviate from the experimental results within 3%. The analysis method can complete the calculation of the damping characteristics within a few seconds. The variations of the thickness, conductivity of the conductive cylinder, and air gap thickness have significant effects on the nonlinear and critical characteristics of the velocity-damping force curve, which can be corrected by changing the coefficients in the analysis method. In summary, the proposed analysis method can provide insights for rapid engineering design and optimization calculation of the PMECB by its completeness, accuracy, adaptability and rapidity.\",\"PeriodicalId\":50340,\"journal\":{\"name\":\"International Journal of Applied Electromagnetics and Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-220194\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-220194","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Analysis method of permanent magnet eddy current brake under impact load
Permanent magnet eddy current brake (PMECB) with high damping performance is widely used in engineering vibration suppression and braking. In this study, based on the braking dynamics of PMECB under impact load, the analysis method related to the damping characteristics are established, including a static magnetic model with flux leakage, a uniform damping force model with demagnetization effect and skin effect, and an acceleration damping force model with magnetic field distortion. The comparison of the analysis method, numerical simulation and experimental results verifies that the analysis method can reproduce the damping law under impact load. The results show that the maximum displacements of the analysis method and numerical simulation deviate from the experimental results within 3%. The analysis method can complete the calculation of the damping characteristics within a few seconds. The variations of the thickness, conductivity of the conductive cylinder, and air gap thickness have significant effects on the nonlinear and critical characteristics of the velocity-damping force curve, which can be corrected by changing the coefficients in the analysis method. In summary, the proposed analysis method can provide insights for rapid engineering design and optimization calculation of the PMECB by its completeness, accuracy, adaptability and rapidity.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.