M. Pampaloni, A. Sordo-Ward, M. Lompi, T. Pacetti, S. Zubelzu, L. Rodríguez-Sinobas, P. Bianucci, E. Caporali, L. Garrote
{"title":"低影响开发对减少城市系统峰值流量的作用","authors":"M. Pampaloni, A. Sordo-Ward, M. Lompi, T. Pacetti, S. Zubelzu, L. Rodríguez-Sinobas, P. Bianucci, E. Caporali, L. Garrote","doi":"10.1111/1752-1688.13188","DOIUrl":null,"url":null,"abstract":"<p>This study proposes an approach to evaluate the efficiency of low impact development (LID) in reducing urban runoff using a rainfall generator to disaggregate daily rainfall into sub-hourly rainfall data, which are used as input of a hydrological model at the urban watershed scale. Twelve scenarios are analyzed combining four percentages of impervious area retrofitted with LIDs (25%, 50%, 75% and 100%), and three LID combinations of green roofs (GRs) and rain gardens (RGs). The rainfall generator Rainsim V.3 is used to generate 500 years of rainfall data with a 15-min time step to analyze the performance of LIDs in the long-term with the LID module of the Soil and Water Assessment Tool hydrological model. An urban watershed of 3 km<sup>2</sup> located in Florence (Italy) is selected as a case study. Results show the performances of GRs and RG on peak flow reduction, highlighting a maximum flow reduction of single facilities ranging between 15% and 60% that can improve in case of their combination. The hydrological performances of LID combinations are very sensitive to the intensity of rainfall events, as well as percentages of area treated underlining the importance of simulating multiple scenarios of intervention to determine the most efficient combination of LIDs for a given case study and support their proper design from a urban water hydrology perspective.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 2","pages":"427-441"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13188","citationCount":"0","resultStr":"{\"title\":\"Performance of low impact development on peak flow reduction in an urban system\",\"authors\":\"M. Pampaloni, A. Sordo-Ward, M. Lompi, T. Pacetti, S. Zubelzu, L. Rodríguez-Sinobas, P. Bianucci, E. Caporali, L. Garrote\",\"doi\":\"10.1111/1752-1688.13188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study proposes an approach to evaluate the efficiency of low impact development (LID) in reducing urban runoff using a rainfall generator to disaggregate daily rainfall into sub-hourly rainfall data, which are used as input of a hydrological model at the urban watershed scale. Twelve scenarios are analyzed combining four percentages of impervious area retrofitted with LIDs (25%, 50%, 75% and 100%), and three LID combinations of green roofs (GRs) and rain gardens (RGs). The rainfall generator Rainsim V.3 is used to generate 500 years of rainfall data with a 15-min time step to analyze the performance of LIDs in the long-term with the LID module of the Soil and Water Assessment Tool hydrological model. An urban watershed of 3 km<sup>2</sup> located in Florence (Italy) is selected as a case study. Results show the performances of GRs and RG on peak flow reduction, highlighting a maximum flow reduction of single facilities ranging between 15% and 60% that can improve in case of their combination. The hydrological performances of LID combinations are very sensitive to the intensity of rainfall events, as well as percentages of area treated underlining the importance of simulating multiple scenarios of intervention to determine the most efficient combination of LIDs for a given case study and support their proper design from a urban water hydrology perspective.</p>\",\"PeriodicalId\":17234,\"journal\":{\"name\":\"Journal of The American Water Resources Association\",\"volume\":\"60 2\",\"pages\":\"427-441\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13188\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The American Water Resources Association\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13188\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13188","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究提出了一种方法来评估低影响开发(LID)在减少城市径流方面的效率,该方法使用雨量生成器将日降雨量分解为亚小时降雨量数据,并将其作为城市流域尺度水文模型的输入。分析了十二种方案,包括四个百分比的不透水面积(25%、50%、75% 和 100%)的 LID 改造,以及绿色屋顶 (GR) 和雨水花园 (RG) 的三种 LID 组合。降雨生成器 Rainsim V.3 用于生成 500 年的降雨数据,时间步长为 15 分钟,以便利用水土评估工具水文模型的 LID 模块分析 LID 的长期性能。案例研究选择了位于意大利佛罗伦萨的一个面积为 3 平方公里的城市流域。研究结果表明,GRs 和 RG 在减少峰值流量方面表现出色,单个设施的最大流量减少率在 15%到 60%之间,如果将这两种设施结合使用,则流量减少率会有所提高。LID 组合的水文性能对降雨事件的强度以及处理面积的百分比非常敏感,强调了模拟多种干预方案的重要性,以确定特定案例研究中最有效的 LID 组合,并支持从城市水文角度对其进行适当设计。
Performance of low impact development on peak flow reduction in an urban system
This study proposes an approach to evaluate the efficiency of low impact development (LID) in reducing urban runoff using a rainfall generator to disaggregate daily rainfall into sub-hourly rainfall data, which are used as input of a hydrological model at the urban watershed scale. Twelve scenarios are analyzed combining four percentages of impervious area retrofitted with LIDs (25%, 50%, 75% and 100%), and three LID combinations of green roofs (GRs) and rain gardens (RGs). The rainfall generator Rainsim V.3 is used to generate 500 years of rainfall data with a 15-min time step to analyze the performance of LIDs in the long-term with the LID module of the Soil and Water Assessment Tool hydrological model. An urban watershed of 3 km2 located in Florence (Italy) is selected as a case study. Results show the performances of GRs and RG on peak flow reduction, highlighting a maximum flow reduction of single facilities ranging between 15% and 60% that can improve in case of their combination. The hydrological performances of LID combinations are very sensitive to the intensity of rainfall events, as well as percentages of area treated underlining the importance of simulating multiple scenarios of intervention to determine the most efficient combination of LIDs for a given case study and support their proper design from a urban water hydrology perspective.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.