Yu Liu , Leijian Chen , Shuyi Zhang , Xiaoxiao Wang , Yuanyuan Song , Hongwen Sun , Zongwei Cai , Lei Wang
{"title":"敷面膜和使用防腐剂会对皮肤健康产生综合影响吗?","authors":"Yu Liu , Leijian Chen , Shuyi Zhang , Xiaoxiao Wang , Yuanyuan Song , Hongwen Sun , Zongwei Cai , Lei Wang","doi":"10.1016/j.eehl.2024.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>Chemical exposure and local hypoxia caused by mask-wearing may result in skin physiology changes. The effects of methylparaben (MeP), a commonly used preservative in personal care products, and hypoxia on skin health were investigated by HaCaT cell and ICR mouse experiments. MeP exposure resulted in lipid peroxidation and interfered with cellular glutathione metabolism, while hypoxia treatment disturbed phenylalanine, tyrosine, and tryptophan biosynthesis pathways and energy metabolism to respond to oxidative stress. A hypoxic environment increased the perturbation of MeP on the purine metabolism in HaCaT cells, resulting in increased expression of proinflammatory cytokines. The synergistic effects were further validated in a mouse model with MeP dermal exposure and “mask-wearing” treatment. CAT, PPARG, and MMP2 were identified as possible key gene targets associated with skin health risks posed by MeP and hypoxia. Network toxicity analysis suggested a synergistic effect, indicating the risk of skin inflammation and skin barrier aging.</p></div>","PeriodicalId":29813,"journal":{"name":"Eco-Environment & Health","volume":"3 1","pages":"Pages 107-115"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772985024000048/pdfft?md5=30a83f8f2b5d92c8c2369df5c48aa094&pid=1-s2.0-S2772985024000048-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Do wearing masks and preservatives have a combined effect on skin health?\",\"authors\":\"Yu Liu , Leijian Chen , Shuyi Zhang , Xiaoxiao Wang , Yuanyuan Song , Hongwen Sun , Zongwei Cai , Lei Wang\",\"doi\":\"10.1016/j.eehl.2024.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chemical exposure and local hypoxia caused by mask-wearing may result in skin physiology changes. The effects of methylparaben (MeP), a commonly used preservative in personal care products, and hypoxia on skin health were investigated by HaCaT cell and ICR mouse experiments. MeP exposure resulted in lipid peroxidation and interfered with cellular glutathione metabolism, while hypoxia treatment disturbed phenylalanine, tyrosine, and tryptophan biosynthesis pathways and energy metabolism to respond to oxidative stress. A hypoxic environment increased the perturbation of MeP on the purine metabolism in HaCaT cells, resulting in increased expression of proinflammatory cytokines. The synergistic effects were further validated in a mouse model with MeP dermal exposure and “mask-wearing” treatment. CAT, PPARG, and MMP2 were identified as possible key gene targets associated with skin health risks posed by MeP and hypoxia. Network toxicity analysis suggested a synergistic effect, indicating the risk of skin inflammation and skin barrier aging.</p></div>\",\"PeriodicalId\":29813,\"journal\":{\"name\":\"Eco-Environment & Health\",\"volume\":\"3 1\",\"pages\":\"Pages 107-115\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772985024000048/pdfft?md5=30a83f8f2b5d92c8c2369df5c48aa094&pid=1-s2.0-S2772985024000048-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eco-Environment & Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772985024000048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eco-Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772985024000048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Do wearing masks and preservatives have a combined effect on skin health?
Chemical exposure and local hypoxia caused by mask-wearing may result in skin physiology changes. The effects of methylparaben (MeP), a commonly used preservative in personal care products, and hypoxia on skin health were investigated by HaCaT cell and ICR mouse experiments. MeP exposure resulted in lipid peroxidation and interfered with cellular glutathione metabolism, while hypoxia treatment disturbed phenylalanine, tyrosine, and tryptophan biosynthesis pathways and energy metabolism to respond to oxidative stress. A hypoxic environment increased the perturbation of MeP on the purine metabolism in HaCaT cells, resulting in increased expression of proinflammatory cytokines. The synergistic effects were further validated in a mouse model with MeP dermal exposure and “mask-wearing” treatment. CAT, PPARG, and MMP2 were identified as possible key gene targets associated with skin health risks posed by MeP and hypoxia. Network toxicity analysis suggested a synergistic effect, indicating the risk of skin inflammation and skin barrier aging.
期刊介绍:
Eco-Environment & Health (EEH) is an international and multidisciplinary peer-reviewed journal designed for publications on the frontiers of the ecology, environment and health as well as their related disciplines. EEH focuses on the concept of “One Health” to promote green and sustainable development, dealing with the interactions among ecology, environment and health, and the underlying mechanisms and interventions. Our mission is to be one of the most important flagship journals in the field of environmental health.
Scopes
EEH covers a variety of research areas, including but not limited to ecology and biodiversity conservation, environmental behaviors and bioprocesses of emerging contaminants, human exposure and health effects, and evaluation, management and regulation of environmental risks. The key topics of EEH include:
1) Ecology and Biodiversity Conservation
Biodiversity
Ecological restoration
Ecological safety
Protected area
2) Environmental and Biological Fate of Emerging Contaminants
Environmental behaviors
Environmental processes
Environmental microbiology
3) Human Exposure and Health Effects
Environmental toxicology
Environmental epidemiology
Environmental health risk
Food safety
4) Evaluation, Management and Regulation of Environmental Risks
Chemical safety
Environmental policy
Health policy
Health economics
Environmental remediation