{"title":"基于强化学习的无人飞行器离散时间系统自适应无碰撞控制","authors":"Xiaoyu Huo, Yanan Guo","doi":"10.1177/16878132231225321","DOIUrl":null,"url":null,"abstract":"A flexible reinforcement learning (RL) optimal collision-avoidance control formulation for unmanned aerial vehicles (UAVs) with discrete-time frameworks is revealed in this work. By utilizing the neural network (NN) estimating capacity and the actor-critic control scheme of the RL technique, an adaptive RL optimal collision-free controller with a minimal learning parameter (MLP) is formulated, which is based on a novel strategic utility function. The optimal collision-avoidance control issue, which couldn’t be addressed in the prior literature, can be resolved by the suggested approaches. Furthermore, the proposed MPL adaptive optimal control formulation allows for a reduction in the quantity of adaptive laws, leading to reduced computational complexity. Additionally, a rigorous stability analysis is provided, demonstrating that the uniform ultimate boundedness (UUB) of all signals in the closed-loop system is ensured by the proposed adaptive RL. Finally, the simulation outcomes illustrate the effectiveness of the proposed optimal RL control approaches.","PeriodicalId":502561,"journal":{"name":"Advances in Mechanical Engineering","volume":"17 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive collision-free control for UAVs with discrete-time system based on reinforcement learning\",\"authors\":\"Xiaoyu Huo, Yanan Guo\",\"doi\":\"10.1177/16878132231225321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A flexible reinforcement learning (RL) optimal collision-avoidance control formulation for unmanned aerial vehicles (UAVs) with discrete-time frameworks is revealed in this work. By utilizing the neural network (NN) estimating capacity and the actor-critic control scheme of the RL technique, an adaptive RL optimal collision-free controller with a minimal learning parameter (MLP) is formulated, which is based on a novel strategic utility function. The optimal collision-avoidance control issue, which couldn’t be addressed in the prior literature, can be resolved by the suggested approaches. Furthermore, the proposed MPL adaptive optimal control formulation allows for a reduction in the quantity of adaptive laws, leading to reduced computational complexity. Additionally, a rigorous stability analysis is provided, demonstrating that the uniform ultimate boundedness (UUB) of all signals in the closed-loop system is ensured by the proposed adaptive RL. Finally, the simulation outcomes illustrate the effectiveness of the proposed optimal RL control approaches.\",\"PeriodicalId\":502561,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132231225321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132231225321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive collision-free control for UAVs with discrete-time system based on reinforcement learning
A flexible reinforcement learning (RL) optimal collision-avoidance control formulation for unmanned aerial vehicles (UAVs) with discrete-time frameworks is revealed in this work. By utilizing the neural network (NN) estimating capacity and the actor-critic control scheme of the RL technique, an adaptive RL optimal collision-free controller with a minimal learning parameter (MLP) is formulated, which is based on a novel strategic utility function. The optimal collision-avoidance control issue, which couldn’t be addressed in the prior literature, can be resolved by the suggested approaches. Furthermore, the proposed MPL adaptive optimal control formulation allows for a reduction in the quantity of adaptive laws, leading to reduced computational complexity. Additionally, a rigorous stability analysis is provided, demonstrating that the uniform ultimate boundedness (UUB) of all signals in the closed-loop system is ensured by the proposed adaptive RL. Finally, the simulation outcomes illustrate the effectiveness of the proposed optimal RL control approaches.