用于自动驾驶轨道车辆的智能道路分割和障碍物检测

Dongtai Li, Jie Zhang
{"title":"用于自动驾驶轨道车辆的智能道路分割和障碍物检测","authors":"Dongtai Li, Jie Zhang","doi":"10.1177/16878132231225312","DOIUrl":null,"url":null,"abstract":"For autonomous railway vehicle with complex crisscrossed tracks, it is a huge challenge to intelligently detect the trespassers lying in the possible track regions where the train will move along. In order to solve the issue that the existing object detection algorithms detect all obstacles in traffic scene images, a novel strategy YOLOSEG is proposed for intelligent road segmentation and obstacle detection of railway trespasser. Unet is firstly trained to intelligently segment the railway track region where the train is likely to move on, and then the generated region mask is introduced into object detection network for recognizing obstacle within the mask area. The real video of the obstacle emerging in front of the train is difficult to record, therefore the traffic scenes taken from drivers’ perspectives are randomly combined with various obstacles to create the synthetic training dataset which covers various railway traffic scenarios and lighting conditions, and at the same time the label file is automatically generated. Furthermore, a random brightness strategy is proposed for dataset enhancement. By the performance evaluation comparison of FLOPs, Top-1 Accuracy, and mAP@0.5/%, abundant trespasser detection experiments based on synthetic dataset and real images verify the accuracy and effectiveness of the proposed method.","PeriodicalId":502561,"journal":{"name":"Advances in Mechanical Engineering","volume":"52 s40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent road segmentation and obstacle detection for autonomous railway vehicle\",\"authors\":\"Dongtai Li, Jie Zhang\",\"doi\":\"10.1177/16878132231225312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For autonomous railway vehicle with complex crisscrossed tracks, it is a huge challenge to intelligently detect the trespassers lying in the possible track regions where the train will move along. In order to solve the issue that the existing object detection algorithms detect all obstacles in traffic scene images, a novel strategy YOLOSEG is proposed for intelligent road segmentation and obstacle detection of railway trespasser. Unet is firstly trained to intelligently segment the railway track region where the train is likely to move on, and then the generated region mask is introduced into object detection network for recognizing obstacle within the mask area. The real video of the obstacle emerging in front of the train is difficult to record, therefore the traffic scenes taken from drivers’ perspectives are randomly combined with various obstacles to create the synthetic training dataset which covers various railway traffic scenarios and lighting conditions, and at the same time the label file is automatically generated. Furthermore, a random brightness strategy is proposed for dataset enhancement. By the performance evaluation comparison of FLOPs, Top-1 Accuracy, and mAP@0.5/%, abundant trespasser detection experiments based on synthetic dataset and real images verify the accuracy and effectiveness of the proposed method.\",\"PeriodicalId\":502561,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":\"52 s40\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132231225312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132231225312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于具有复杂纵横交错轨道的自主轨道车辆来说,如何智能检测列车可能行驶的轨道区域内的闯入者是一个巨大的挑战。为了解决现有物体检测算法检测交通场景图像中所有障碍物的问题,我们提出了一种新颖的 YOLOSEG 策略,用于智能道路分割和铁路闯入者障碍物检测。首先对 Unet 进行训练,智能分割火车可能行驶的铁轨区域,然后将生成的区域掩码引入物体检测网络,识别掩码区域内的障碍物。列车前方出现障碍物的真实视频难以记录,因此从司机视角拍摄的交通场景与各种障碍物随机组合,创建涵盖各种铁路交通场景和照明条件的合成训练数据集,同时自动生成标签文件。此外,还提出了一种用于增强数据集的随机亮度策略。通过 FLOPs、Top-1 准确率和 mAP@0.5/% 的性能评估比较,基于合成数据集和真实图像的大量非法闯入者检测实验验证了所提方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent road segmentation and obstacle detection for autonomous railway vehicle
For autonomous railway vehicle with complex crisscrossed tracks, it is a huge challenge to intelligently detect the trespassers lying in the possible track regions where the train will move along. In order to solve the issue that the existing object detection algorithms detect all obstacles in traffic scene images, a novel strategy YOLOSEG is proposed for intelligent road segmentation and obstacle detection of railway trespasser. Unet is firstly trained to intelligently segment the railway track region where the train is likely to move on, and then the generated region mask is introduced into object detection network for recognizing obstacle within the mask area. The real video of the obstacle emerging in front of the train is difficult to record, therefore the traffic scenes taken from drivers’ perspectives are randomly combined with various obstacles to create the synthetic training dataset which covers various railway traffic scenarios and lighting conditions, and at the same time the label file is automatically generated. Furthermore, a random brightness strategy is proposed for dataset enhancement. By the performance evaluation comparison of FLOPs, Top-1 Accuracy, and mAP@0.5/%, abundant trespasser detection experiments based on synthetic dataset and real images verify the accuracy and effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of Al2O3 nanoparticle concentration and cutting parameters in hard milling under nanofluid MQL environment Analysis of the valve positioner pilot valve hole plugging Integrated design of insertions-extractions performance and contact reliability of spring-wire socket electrical connector Wear mechanisms of diamond segmenta in cutting of carbon fiber reinforced cement-based composite and optimizing in parameters Thermal transport exploration of ternary hybrid nanofluid flow in a non-Newtonian model with homogeneous-heterogeneous chemical reactions induced by vertical cylinder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1