Jiaqi Gao , Lingli Wang , Ziwei Pan , Shengnan Liu , Qing Gu , Dafeng Song
{"title":"立枯草精油(Litsea cubeba (Lour.) Pers.)及其主要成分柠檬醛对铃木果蝇的杀虫活性:组织学和超微结构评估","authors":"Jiaqi Gao , Lingli Wang , Ziwei Pan , Shengnan Liu , Qing Gu , Dafeng Song","doi":"10.1016/j.napere.2024.100068","DOIUrl":null,"url":null,"abstract":"<div><p>Application of synthetic insecticides is the most frequently used method for controlling pests. However, their indiscriminatory use has led to the development of resistance and high insecticide residues in the environment. Natural products that have low mammalian toxicity with low environmental impact, are viable alternatives to synthetic pesticides. This study aimed to evaluate the contact, fumigant toxicity, and repellent activity of <em>Litsea cubeba</em> essential oil (EO) and its major compound citral against <em>Drosophila suzukii</em> (Matsumura). The morphological alterations in target organs and microscopic damage were observed by scanning electron microscopy (SEM) and light microscopy. Contact exposure to <em>Litsea cubeba</em> EO at 1.0 μL/cm<sup>2</sup> resulted in mortality of 91.67% in 24 h. Fumigant toxicity assay showed that larvae mortality reached 100% when <em>Drosophila</em> adults were exposed to 100 μL/L <em>Litsea cubeba</em> EO within 24 h. <em>Litsea cubeba</em> EO was most repellent at 1.0 μL/cm<sup>2</sup>. The symptoms caused by <em>Litsea cubeba</em> EO and citral on larval epidermis was uneven pigmentation and darkening of body. In the SEM images, treated <em>Drosophila</em> larvae exhibited a dry cuticle surface, sensory distortions, and general degeneration. The intensified cytoplasmic vacuolation and necrosis of the intestinal tract were observed in the photomicrographs with both extracts. This study showed that <em>Litsea cubeba</em> EO can be utilized as a bioinsecticide against <em>Drosophila</em>, making it an environmentally safer option for pest management in fruit and vegetable preservation.</p></div>","PeriodicalId":100809,"journal":{"name":"Journal of Natural Pesticide Research","volume":"8 ","pages":"Article 100068"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773078624000025/pdfft?md5=12b9626e0a05f2906dcbccba11d965fc&pid=1-s2.0-S2773078624000025-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Insecticide activity of essential oil of Litsea cubeba (Lour.) Pers. and its major component citral against Drosophila suzukii: Histological and ultrastructural assessment\",\"authors\":\"Jiaqi Gao , Lingli Wang , Ziwei Pan , Shengnan Liu , Qing Gu , Dafeng Song\",\"doi\":\"10.1016/j.napere.2024.100068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Application of synthetic insecticides is the most frequently used method for controlling pests. However, their indiscriminatory use has led to the development of resistance and high insecticide residues in the environment. Natural products that have low mammalian toxicity with low environmental impact, are viable alternatives to synthetic pesticides. This study aimed to evaluate the contact, fumigant toxicity, and repellent activity of <em>Litsea cubeba</em> essential oil (EO) and its major compound citral against <em>Drosophila suzukii</em> (Matsumura). The morphological alterations in target organs and microscopic damage were observed by scanning electron microscopy (SEM) and light microscopy. Contact exposure to <em>Litsea cubeba</em> EO at 1.0 μL/cm<sup>2</sup> resulted in mortality of 91.67% in 24 h. Fumigant toxicity assay showed that larvae mortality reached 100% when <em>Drosophila</em> adults were exposed to 100 μL/L <em>Litsea cubeba</em> EO within 24 h. <em>Litsea cubeba</em> EO was most repellent at 1.0 μL/cm<sup>2</sup>. The symptoms caused by <em>Litsea cubeba</em> EO and citral on larval epidermis was uneven pigmentation and darkening of body. In the SEM images, treated <em>Drosophila</em> larvae exhibited a dry cuticle surface, sensory distortions, and general degeneration. The intensified cytoplasmic vacuolation and necrosis of the intestinal tract were observed in the photomicrographs with both extracts. This study showed that <em>Litsea cubeba</em> EO can be utilized as a bioinsecticide against <em>Drosophila</em>, making it an environmentally safer option for pest management in fruit and vegetable preservation.</p></div>\",\"PeriodicalId\":100809,\"journal\":{\"name\":\"Journal of Natural Pesticide Research\",\"volume\":\"8 \",\"pages\":\"Article 100068\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773078624000025/pdfft?md5=12b9626e0a05f2906dcbccba11d965fc&pid=1-s2.0-S2773078624000025-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Pesticide Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773078624000025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Pesticide Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773078624000025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Insecticide activity of essential oil of Litsea cubeba (Lour.) Pers. and its major component citral against Drosophila suzukii: Histological and ultrastructural assessment
Application of synthetic insecticides is the most frequently used method for controlling pests. However, their indiscriminatory use has led to the development of resistance and high insecticide residues in the environment. Natural products that have low mammalian toxicity with low environmental impact, are viable alternatives to synthetic pesticides. This study aimed to evaluate the contact, fumigant toxicity, and repellent activity of Litsea cubeba essential oil (EO) and its major compound citral against Drosophila suzukii (Matsumura). The morphological alterations in target organs and microscopic damage were observed by scanning electron microscopy (SEM) and light microscopy. Contact exposure to Litsea cubeba EO at 1.0 μL/cm2 resulted in mortality of 91.67% in 24 h. Fumigant toxicity assay showed that larvae mortality reached 100% when Drosophila adults were exposed to 100 μL/L Litsea cubeba EO within 24 h. Litsea cubeba EO was most repellent at 1.0 μL/cm2. The symptoms caused by Litsea cubeba EO and citral on larval epidermis was uneven pigmentation and darkening of body. In the SEM images, treated Drosophila larvae exhibited a dry cuticle surface, sensory distortions, and general degeneration. The intensified cytoplasmic vacuolation and necrosis of the intestinal tract were observed in the photomicrographs with both extracts. This study showed that Litsea cubeba EO can be utilized as a bioinsecticide against Drosophila, making it an environmentally safer option for pest management in fruit and vegetable preservation.