Helena Raymond-Hayling , Yinhui Lu , Tom Shearer , Karl Kadler
{"title":"对出生后发育过程中肌腱微结构形成的初步研究","authors":"Helena Raymond-Hayling , Yinhui Lu , Tom Shearer , Karl Kadler","doi":"10.1016/j.mbplus.2024.100142","DOIUrl":null,"url":null,"abstract":"<div><p>Tendons maintain mechanical function throughout postnatal development whilst undergoing significant microstructural changes. We present a study of postnatal tendon growth and characterise the major changes in collagen fibril architecture in mouse tail tendon from birth to eight weeks by analysing the geometries of cross-sectional transmission electron microscopy images. This study finds that a bimodal distribution of fibril diameters emerges from a unimodal distribution of narrow fibrils as early as the eighth day postnatal, and three distinct fibril populations are visible at around 14 days. The tendons in this study do not show evidence of precise hexagonal packing, even at birth, and the spaces between the fibrils remain constant throughout development. The fibril number in the tissue stabilises around day 28, and the fibril area fraction stabilises around day 26. This study gives coarse-grained insight into the transition periods in early tendon development.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"21 ","pages":"Article 100142"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028524000024/pdfft?md5=45dd56b1c29032ce3e1911900a9f3479&pid=1-s2.0-S2590028524000024-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A preliminary study into the emergence of tendon microstructure during postnatal development\",\"authors\":\"Helena Raymond-Hayling , Yinhui Lu , Tom Shearer , Karl Kadler\",\"doi\":\"10.1016/j.mbplus.2024.100142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tendons maintain mechanical function throughout postnatal development whilst undergoing significant microstructural changes. We present a study of postnatal tendon growth and characterise the major changes in collagen fibril architecture in mouse tail tendon from birth to eight weeks by analysing the geometries of cross-sectional transmission electron microscopy images. This study finds that a bimodal distribution of fibril diameters emerges from a unimodal distribution of narrow fibrils as early as the eighth day postnatal, and three distinct fibril populations are visible at around 14 days. The tendons in this study do not show evidence of precise hexagonal packing, even at birth, and the spaces between the fibrils remain constant throughout development. The fibril number in the tissue stabilises around day 28, and the fibril area fraction stabilises around day 26. This study gives coarse-grained insight into the transition periods in early tendon development.</p></div>\",\"PeriodicalId\":52317,\"journal\":{\"name\":\"Matrix Biology Plus\",\"volume\":\"21 \",\"pages\":\"Article 100142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590028524000024/pdfft?md5=45dd56b1c29032ce3e1911900a9f3479&pid=1-s2.0-S2590028524000024-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matrix Biology Plus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590028524000024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology Plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590028524000024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
A preliminary study into the emergence of tendon microstructure during postnatal development
Tendons maintain mechanical function throughout postnatal development whilst undergoing significant microstructural changes. We present a study of postnatal tendon growth and characterise the major changes in collagen fibril architecture in mouse tail tendon from birth to eight weeks by analysing the geometries of cross-sectional transmission electron microscopy images. This study finds that a bimodal distribution of fibril diameters emerges from a unimodal distribution of narrow fibrils as early as the eighth day postnatal, and three distinct fibril populations are visible at around 14 days. The tendons in this study do not show evidence of precise hexagonal packing, even at birth, and the spaces between the fibrils remain constant throughout development. The fibril number in the tissue stabilises around day 28, and the fibril area fraction stabilises around day 26. This study gives coarse-grained insight into the transition periods in early tendon development.