{"title":"机器学习在儿科营养学中的应用。","authors":"Aneurin Young, Mark J Johnson, R Mark Beattie","doi":"10.1097/MCO.0000000000001018","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>In recent years, there has been a burgeoning interest in using machine learning methods. This has been accompanied by an expansion in the availability and ease of use of machine learning tools and an increase in the number of large, complex datasets which are suited to machine learning approaches. This review summarizes recent work in the field and sets expectations for its impact in the future.</p><p><strong>Recent findings: </strong>Much work has focused on establishing good practices and ethical frameworks to guide the use of machine learning in research. Machine learning has an established role in identifying features in 'omics' research and is emerging as a tool to generate predictive models to identify people at risk of disease and patients at risk of complications. They have been used to identify risks for malnutrition and obesity. Machine learning techniques have also been used to develop smartphone apps to track behaviour and provide healthcare advice.</p><p><strong>Summary: </strong>Machine learning techniques are reaching maturity and their impact on observational data analysis and behaviour change will come to fruition in the next 5 years. A set of standards and best practices are emerging and should be implemented by researchers and publishers.</p>","PeriodicalId":10962,"journal":{"name":"Current Opinion in Clinical Nutrition and Metabolic Care","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of machine learning in paediatric nutrition.\",\"authors\":\"Aneurin Young, Mark J Johnson, R Mark Beattie\",\"doi\":\"10.1097/MCO.0000000000001018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>In recent years, there has been a burgeoning interest in using machine learning methods. This has been accompanied by an expansion in the availability and ease of use of machine learning tools and an increase in the number of large, complex datasets which are suited to machine learning approaches. This review summarizes recent work in the field and sets expectations for its impact in the future.</p><p><strong>Recent findings: </strong>Much work has focused on establishing good practices and ethical frameworks to guide the use of machine learning in research. Machine learning has an established role in identifying features in 'omics' research and is emerging as a tool to generate predictive models to identify people at risk of disease and patients at risk of complications. They have been used to identify risks for malnutrition and obesity. Machine learning techniques have also been used to develop smartphone apps to track behaviour and provide healthcare advice.</p><p><strong>Summary: </strong>Machine learning techniques are reaching maturity and their impact on observational data analysis and behaviour change will come to fruition in the next 5 years. A set of standards and best practices are emerging and should be implemented by researchers and publishers.</p>\",\"PeriodicalId\":10962,\"journal\":{\"name\":\"Current Opinion in Clinical Nutrition and Metabolic Care\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Clinical Nutrition and Metabolic Care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/MCO.0000000000001018\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Clinical Nutrition and Metabolic Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MCO.0000000000001018","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
The use of machine learning in paediatric nutrition.
Purpose of review: In recent years, there has been a burgeoning interest in using machine learning methods. This has been accompanied by an expansion in the availability and ease of use of machine learning tools and an increase in the number of large, complex datasets which are suited to machine learning approaches. This review summarizes recent work in the field and sets expectations for its impact in the future.
Recent findings: Much work has focused on establishing good practices and ethical frameworks to guide the use of machine learning in research. Machine learning has an established role in identifying features in 'omics' research and is emerging as a tool to generate predictive models to identify people at risk of disease and patients at risk of complications. They have been used to identify risks for malnutrition and obesity. Machine learning techniques have also been used to develop smartphone apps to track behaviour and provide healthcare advice.
Summary: Machine learning techniques are reaching maturity and their impact on observational data analysis and behaviour change will come to fruition in the next 5 years. A set of standards and best practices are emerging and should be implemented by researchers and publishers.
期刊介绍:
A high impact review journal which boasts an international readership, Current Opinion in Clinical Nutrition and Metabolic Care offers a broad-based perspective on the most recent and exciting developments within the field of clinical nutrition and metabolic care. Published bimonthly, each issue features insightful editorials and high quality invited reviews covering two or three key disciplines which include protein, amino acid metabolism and therapy, lipid metabolism and therapy, nutrition and the intensive care unit and carbohydrates. Each discipline introduces world renowned guest editors to ensure the journal is at the forefront of knowledge development and delivers balanced, expert assessments of advances from the previous year.