开发机器学习模型,预测 COVID-19 相关粘孢子虫病的发病风险。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-03-01 Epub Date: 2024-01-31 DOI:10.2217/fmb-2023-0190
Rajashri Patil, Sahjid Mukhida, Jyoti Ajagunde, Uzair Khan, Sameena Khan, Nageswari Gandham, Chanda Vyawhare, Nikunja K Das, Shahzad Mirza
{"title":"开发机器学习模型,预测 COVID-19 相关粘孢子虫病的发病风险。","authors":"Rajashri Patil, Sahjid Mukhida, Jyoti Ajagunde, Uzair Khan, Sameena Khan, Nageswari Gandham, Chanda Vyawhare, Nikunja K Das, Shahzad Mirza","doi":"10.2217/fmb-2023-0190","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> The study aimed to identify quantitative parameters that increase the risk of rhino-orbito-cerebral mucormycosis, and subsequently developed a machine learning model that can anticipate susceptibility to developing this condition. <b>Methods:</b> Clinicopathological data from 124 patients were used to quantify their association with COVID-19-associated mucormycosis (CAM) and subsequently develop a machine learning model to predict its likelihood. <b>Results:</b> Diabetes mellitus, noninvasive ventilation and hypertension were found to have statistically significant associations with radiologically confirmed CAM cases. <b>Conclusion:</b> Machine learning models can be used to accurately predict the likelihood of development of CAM, and this methodology can be used in creating prediction algorithms of a wide variety of infections and complications.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a machine learning model to predict risk of development of COVID-19-associated mucormycosis.\",\"authors\":\"Rajashri Patil, Sahjid Mukhida, Jyoti Ajagunde, Uzair Khan, Sameena Khan, Nageswari Gandham, Chanda Vyawhare, Nikunja K Das, Shahzad Mirza\",\"doi\":\"10.2217/fmb-2023-0190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> The study aimed to identify quantitative parameters that increase the risk of rhino-orbito-cerebral mucormycosis, and subsequently developed a machine learning model that can anticipate susceptibility to developing this condition. <b>Methods:</b> Clinicopathological data from 124 patients were used to quantify their association with COVID-19-associated mucormycosis (CAM) and subsequently develop a machine learning model to predict its likelihood. <b>Results:</b> Diabetes mellitus, noninvasive ventilation and hypertension were found to have statistically significant associations with radiologically confirmed CAM cases. <b>Conclusion:</b> Machine learning models can be used to accurately predict the likelihood of development of CAM, and this methodology can be used in creating prediction algorithms of a wide variety of infections and complications.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2217/fmb-2023-0190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2217/fmb-2023-0190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在确定增加罹患鼻-眼-脑粘液瘤病风险的定量参数,并随后开发出一种可预测罹患该病易感性的机器学习模型。研究方法利用124名患者的临床病理数据量化他们与COVID-19相关粘液瘤病的关联,并随后开发了一个机器学习模型来预测其发生的可能性。研究结果发现糖尿病、无创通气和高血压与放射学确诊的粘液瘤病例有显著的统计学关联。结论:机器学习模型可用于准确预测 CAM 发生的可能性,这种方法可用于创建各种感染和并发症的预测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a machine learning model to predict risk of development of COVID-19-associated mucormycosis.

Aim: The study aimed to identify quantitative parameters that increase the risk of rhino-orbito-cerebral mucormycosis, and subsequently developed a machine learning model that can anticipate susceptibility to developing this condition. Methods: Clinicopathological data from 124 patients were used to quantify their association with COVID-19-associated mucormycosis (CAM) and subsequently develop a machine learning model to predict its likelihood. Results: Diabetes mellitus, noninvasive ventilation and hypertension were found to have statistically significant associations with radiologically confirmed CAM cases. Conclusion: Machine learning models can be used to accurately predict the likelihood of development of CAM, and this methodology can be used in creating prediction algorithms of a wide variety of infections and complications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1