海马神经元中 NMDA 受体的肌球蛋白 Va 依赖性运输

IF 5.9 2区 医学 Q1 NEUROSCIENCES Neuroscience bulletin Pub Date : 2024-08-01 Epub Date: 2024-01-30 DOI:10.1007/s12264-023-01174-y
Ru Gong, Linwei Qin, Linlin Chen, Ning Wang, Yifei Bao, Wei Lu
{"title":"海马神经元中 NMDA 受体的肌球蛋白 Va 依赖性运输","authors":"Ru Gong, Linwei Qin, Linlin Chen, Ning Wang, Yifei Bao, Wei Lu","doi":"10.1007/s12264-023-01174-y","DOIUrl":null,"url":null,"abstract":"<p><p>N-methyl-D-aspartate receptor (NMDAR) trafficking is a key process in the regulation of synaptic efficacy and brain function. However, the molecular mechanism underlying the surface transport of NMDARs is largely unknown. Here we identified myosin Va (MyoVa) as the specific motor protein that traffics NMDARs in hippocampal neurons. We found that MyoVa associates with NMDARs through its cargo binding domain. This association was increased during NMDAR surface transport. Knockdown of MyoVa suppressed NMDAR transport. We further demonstrated that Ca<sup>2+</sup>/calmodulin-dependent protein kinase II (CaMKII) regulates NMDAR transport through its direct interaction with MyoVa. Furthermore, MyoVa employed Rab11 family-interacting protein 3 (Rab11/FIP3) as the adaptor proteins to couple themselves with NMDARs during their transport. Accordingly, the knockdown of FIP3 impairs hippocampal memory. Together, we conclude that in hippocampal neurons, MyoVa conducts active transport of NMDARs in a CaMKII-dependent manner.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"1053-1075"},"PeriodicalIF":5.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306496/pdf/","citationCount":"0","resultStr":"{\"title\":\"Myosin Va-dependent Transport of NMDA Receptors in Hippocampal Neurons.\",\"authors\":\"Ru Gong, Linwei Qin, Linlin Chen, Ning Wang, Yifei Bao, Wei Lu\",\"doi\":\"10.1007/s12264-023-01174-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>N-methyl-D-aspartate receptor (NMDAR) trafficking is a key process in the regulation of synaptic efficacy and brain function. However, the molecular mechanism underlying the surface transport of NMDARs is largely unknown. Here we identified myosin Va (MyoVa) as the specific motor protein that traffics NMDARs in hippocampal neurons. We found that MyoVa associates with NMDARs through its cargo binding domain. This association was increased during NMDAR surface transport. Knockdown of MyoVa suppressed NMDAR transport. We further demonstrated that Ca<sup>2+</sup>/calmodulin-dependent protein kinase II (CaMKII) regulates NMDAR transport through its direct interaction with MyoVa. Furthermore, MyoVa employed Rab11 family-interacting protein 3 (Rab11/FIP3) as the adaptor proteins to couple themselves with NMDARs during their transport. Accordingly, the knockdown of FIP3 impairs hippocampal memory. Together, we conclude that in hippocampal neurons, MyoVa conducts active transport of NMDARs in a CaMKII-dependent manner.</p>\",\"PeriodicalId\":19314,\"journal\":{\"name\":\"Neuroscience bulletin\",\"volume\":\" \",\"pages\":\"1053-1075\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306496/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12264-023-01174-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-023-01174-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

N-甲基-D-天冬氨酸受体(NMDAR)的转运是调节突触功效和大脑功能的一个关键过程。然而,NMDARs 表面转运的分子机制在很大程度上还不为人知。在这里,我们发现肌球蛋白 Va(MyoVa)是海马神经元中运输 NMDAR 的特异性运动蛋白。我们发现,MyoVa 通过其货物结合域与 NMDARs 结合。在 NMDAR 表面运输过程中,这种结合会增强。敲除 MyoVa 会抑制 NMDAR 转运。我们进一步证实,钙离子/钙调蛋白依赖性蛋白激酶 II(CaMKII)通过与 MyoVa 的直接相互作用调节 NMDAR 转运。此外,MyoVa还利用Rab11家族互作蛋白3(Rab11/FIP3)作为适配蛋白,在转运过程中将自身与NMDAR耦合。因此,敲除 FIP3 会损害海马记忆。综上所述,我们得出结论:在海马神经元中,MyoVa 以一种依赖于 CaMKII 的方式进行 NMDARs 的主动运输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Myosin Va-dependent Transport of NMDA Receptors in Hippocampal Neurons.

N-methyl-D-aspartate receptor (NMDAR) trafficking is a key process in the regulation of synaptic efficacy and brain function. However, the molecular mechanism underlying the surface transport of NMDARs is largely unknown. Here we identified myosin Va (MyoVa) as the specific motor protein that traffics NMDARs in hippocampal neurons. We found that MyoVa associates with NMDARs through its cargo binding domain. This association was increased during NMDAR surface transport. Knockdown of MyoVa suppressed NMDAR transport. We further demonstrated that Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates NMDAR transport through its direct interaction with MyoVa. Furthermore, MyoVa employed Rab11 family-interacting protein 3 (Rab11/FIP3) as the adaptor proteins to couple themselves with NMDARs during their transport. Accordingly, the knockdown of FIP3 impairs hippocampal memory. Together, we conclude that in hippocampal neurons, MyoVa conducts active transport of NMDARs in a CaMKII-dependent manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience bulletin
Neuroscience bulletin NEUROSCIENCES-
CiteScore
7.20
自引率
16.10%
发文量
163
审稿时长
6-12 weeks
期刊介绍: Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer. NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.
期刊最新文献
A Method for Detecting Depression in Adolescence Based on an Affective Brain-Computer Interface and Resting-State Electroencephalogram Signals. IsoVISoR: Towards 3D Mesoscale Brain Mapping of Large Mammals at Isotropic Sub-micron Resolution. Special Issue Celebrating the 25th Anniversary of the Institute of Neuroscience, CAS. Glutamatergic Circuits in the Pedunculopontine Nucleus Modulate Multiple Motor Functions. Sonic Hedgehog Mediates High Frequency-Dependent Deep Brain Stimulation for the Correction of Motor Deficits in a Parkinson's Disease Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1