Jiayue Liu, Joshua Stohl, Enrique A Lopez-Poveda, Tobias Overath
{"title":"量化听觉失真对语音感知的影响","authors":"Jiayue Liu, Joshua Stohl, Enrique A Lopez-Poveda, Tobias Overath","doi":"10.1177/23312165241227818","DOIUrl":null,"url":null,"abstract":"<p><p>The past decade has seen a wealth of research dedicated to determining which and how morphological changes in the auditory periphery contribute to people experiencing hearing difficulties in noise despite having clinically normal audiometric thresholds in quiet. Evidence from animal studies suggests that cochlear synaptopathy in the inner ear might lead to auditory nerve deafferentation, resulting in impoverished signal transmission to the brain. Here, we quantify the likely perceptual consequences of auditory deafferentation in humans via a physiologically inspired encoding-decoding model. The encoding stage simulates the processing of an acoustic input stimulus (e.g., speech) at the auditory periphery, while the decoding stage is trained to optimally regenerate the input stimulus from the simulated auditory nerve firing data. This allowed us to quantify the effect of different degrees of auditory deafferentation by measuring the extent to which the decoded signal supported the identification of speech in quiet and in noise. In a series of experiments, speech perception thresholds in quiet and in noise increased (worsened) significantly as a function of the degree of auditory deafferentation for modeled deafferentation greater than 90%. Importantly, this effect was significantly stronger in a noisy than in a quiet background. The encoding-decoding model thus captured the hallmark symptom of degraded speech perception in noise together with normal speech perception in quiet. As such, the model might function as a quantitative guide to evaluating the degree of auditory deafferentation in human listeners.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":"28 ","pages":"23312165241227818"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10832414/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantifying the Impact of Auditory Deafferentation on Speech Perception.\",\"authors\":\"Jiayue Liu, Joshua Stohl, Enrique A Lopez-Poveda, Tobias Overath\",\"doi\":\"10.1177/23312165241227818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The past decade has seen a wealth of research dedicated to determining which and how morphological changes in the auditory periphery contribute to people experiencing hearing difficulties in noise despite having clinically normal audiometric thresholds in quiet. Evidence from animal studies suggests that cochlear synaptopathy in the inner ear might lead to auditory nerve deafferentation, resulting in impoverished signal transmission to the brain. Here, we quantify the likely perceptual consequences of auditory deafferentation in humans via a physiologically inspired encoding-decoding model. The encoding stage simulates the processing of an acoustic input stimulus (e.g., speech) at the auditory periphery, while the decoding stage is trained to optimally regenerate the input stimulus from the simulated auditory nerve firing data. This allowed us to quantify the effect of different degrees of auditory deafferentation by measuring the extent to which the decoded signal supported the identification of speech in quiet and in noise. In a series of experiments, speech perception thresholds in quiet and in noise increased (worsened) significantly as a function of the degree of auditory deafferentation for modeled deafferentation greater than 90%. Importantly, this effect was significantly stronger in a noisy than in a quiet background. The encoding-decoding model thus captured the hallmark symptom of degraded speech perception in noise together with normal speech perception in quiet. As such, the model might function as a quantitative guide to evaluating the degree of auditory deafferentation in human listeners.</p>\",\"PeriodicalId\":48678,\"journal\":{\"name\":\"Trends in Hearing\",\"volume\":\"28 \",\"pages\":\"23312165241227818\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10832414/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Hearing\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/23312165241227818\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Hearing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/23312165241227818","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
Quantifying the Impact of Auditory Deafferentation on Speech Perception.
The past decade has seen a wealth of research dedicated to determining which and how morphological changes in the auditory periphery contribute to people experiencing hearing difficulties in noise despite having clinically normal audiometric thresholds in quiet. Evidence from animal studies suggests that cochlear synaptopathy in the inner ear might lead to auditory nerve deafferentation, resulting in impoverished signal transmission to the brain. Here, we quantify the likely perceptual consequences of auditory deafferentation in humans via a physiologically inspired encoding-decoding model. The encoding stage simulates the processing of an acoustic input stimulus (e.g., speech) at the auditory periphery, while the decoding stage is trained to optimally regenerate the input stimulus from the simulated auditory nerve firing data. This allowed us to quantify the effect of different degrees of auditory deafferentation by measuring the extent to which the decoded signal supported the identification of speech in quiet and in noise. In a series of experiments, speech perception thresholds in quiet and in noise increased (worsened) significantly as a function of the degree of auditory deafferentation for modeled deafferentation greater than 90%. Importantly, this effect was significantly stronger in a noisy than in a quiet background. The encoding-decoding model thus captured the hallmark symptom of degraded speech perception in noise together with normal speech perception in quiet. As such, the model might function as a quantitative guide to evaluating the degree of auditory deafferentation in human listeners.
Trends in HearingAUDIOLOGY & SPEECH-LANGUAGE PATHOLOGYOTORH-OTORHINOLARYNGOLOGY
CiteScore
4.50
自引率
11.10%
发文量
44
审稿时长
12 weeks
期刊介绍:
Trends in Hearing is an open access journal completely dedicated to publishing original research and reviews focusing on human hearing, hearing loss, hearing aids, auditory implants, and aural rehabilitation. Under its former name, Trends in Amplification, the journal established itself as a forum for concise explorations of all areas of translational hearing research by leaders in the field. Trends in Hearing has now expanded its focus to include original research articles, with the goal of becoming the premier venue for research related to human hearing and hearing loss.