利用可回收的掺铁 WO3/SiO2 异质结构实现高性能光催化还原 Cr(VI)。

0 MATERIALS SCIENCE, MULTIDISCIPLINARY Discover nano Pub Date : 2024-01-31 DOI:10.1186/s11671-023-03919-0
Natkritta Boonprakob, Duangdao Channei, Chen Zhao
{"title":"利用可回收的掺铁 WO3/SiO2 异质结构实现高性能光催化还原 Cr(VI)。","authors":"Natkritta Boonprakob, Duangdao Channei, Chen Zhao","doi":"10.1186/s11671-023-03919-0","DOIUrl":null,"url":null,"abstract":"<p><p>The enhancement of the photocatalytic performance of pristine WO<sub>3</sub> was systematically adjusted due to its fast recombination rate and low reduction potential. A designed heterostructure photocatalyst was necessarily synthesised by Fe<sup>3+</sup> metal ions doping into WO<sub>3</sub> structure with and composition modification. In this study, we synthesised a retrievable Fe-doped WO<sub>3</sub>/SiO<sub>2</sub> heterostructure using a surfactant-assisted hydrothermal method. This heterostructure was then employed as an effective photocatalyst for the removal of Cr(VI) under visible light irradiation. Enlarged photocatalytic reduction was observed over a synergetic 7.5 mol% Fe-doped WO<sub>3</sub>/SiO<sub>2</sub>-20 nanocomposite, resulting in dramatically increased activity compared with undoped WO<sub>3</sub> and SiO<sub>2</sub> nanomaterials under visible light illumination within 90 min. The presence of 7.5 mol% Fe<sup>3+</sup> ion dopant in WO<sub>3</sub> optimised electron-hole recombination, consequently reducing WO<sub>3</sub> photocorrosion. After adding SiO<sub>2</sub> nanoparticles, the binary WO<sub>3</sub>-SiO<sub>2</sub> nanocomposite played roles as both adsorbent and photocatalyst to increase specific surface area. Thus, the 7.5 mol% Fe-doped WO<sub>3</sub>/SiO<sub>2</sub>-20 nanocomposite catalyst had more active sites on the surface of catalyst, and enhanced photocatalytic reduction was significantly achieved. The results showed 91.1% photocatalytic reduction over the optimum photocatalyst, with a photoreduction kinetic rate of 21.1 × 10<sup>-3</sup> min<sup>-1</sup>, which was approximately four times faster than pristine WO<sub>3</sub>. Therefore, the superior optimal photocatalyst demonstrated reusability, with activities decreasing by only 9.8% after five cycles. The high photocatalytic performance and excellent stability of our photocatalyst indicate great potential for water pollution treatments.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"22"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831000/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-performance photocatalytic reduction of Cr(VI) using a retrievable Fe-doped WO<sub>3</sub>/SiO<sub>2</sub> heterostructure.\",\"authors\":\"Natkritta Boonprakob, Duangdao Channei, Chen Zhao\",\"doi\":\"10.1186/s11671-023-03919-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The enhancement of the photocatalytic performance of pristine WO<sub>3</sub> was systematically adjusted due to its fast recombination rate and low reduction potential. A designed heterostructure photocatalyst was necessarily synthesised by Fe<sup>3+</sup> metal ions doping into WO<sub>3</sub> structure with and composition modification. In this study, we synthesised a retrievable Fe-doped WO<sub>3</sub>/SiO<sub>2</sub> heterostructure using a surfactant-assisted hydrothermal method. This heterostructure was then employed as an effective photocatalyst for the removal of Cr(VI) under visible light irradiation. Enlarged photocatalytic reduction was observed over a synergetic 7.5 mol% Fe-doped WO<sub>3</sub>/SiO<sub>2</sub>-20 nanocomposite, resulting in dramatically increased activity compared with undoped WO<sub>3</sub> and SiO<sub>2</sub> nanomaterials under visible light illumination within 90 min. The presence of 7.5 mol% Fe<sup>3+</sup> ion dopant in WO<sub>3</sub> optimised electron-hole recombination, consequently reducing WO<sub>3</sub> photocorrosion. After adding SiO<sub>2</sub> nanoparticles, the binary WO<sub>3</sub>-SiO<sub>2</sub> nanocomposite played roles as both adsorbent and photocatalyst to increase specific surface area. Thus, the 7.5 mol% Fe-doped WO<sub>3</sub>/SiO<sub>2</sub>-20 nanocomposite catalyst had more active sites on the surface of catalyst, and enhanced photocatalytic reduction was significantly achieved. The results showed 91.1% photocatalytic reduction over the optimum photocatalyst, with a photoreduction kinetic rate of 21.1 × 10<sup>-3</sup> min<sup>-1</sup>, which was approximately four times faster than pristine WO<sub>3</sub>. Therefore, the superior optimal photocatalyst demonstrated reusability, with activities decreasing by only 9.8% after five cycles. The high photocatalytic performance and excellent stability of our photocatalyst indicate great potential for water pollution treatments.</p>\",\"PeriodicalId\":72828,\"journal\":{\"name\":\"Discover nano\",\"volume\":\"19 1\",\"pages\":\"22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831000/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover nano\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s11671-023-03919-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover nano","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-023-03919-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于原始 WO3 的重组速率快、还原电位低,因此需要系统地调整其光催化性能。通过在 WO3 结构中掺入 Fe3+ 金属离子并对其成分进行改性,必然会合成出一种设计好的异质结构光催化剂。在本研究中,我们采用表面活性剂辅助水热法合成了一种可回收的掺杂 Fe 的 WO3/SiO2 异质结构。然后将这种异质结构用作一种有效的光催化剂,在可见光照射下去除六价铬。与未掺杂的 WO3 和 SiO2 纳米材料相比,掺杂 7.5 mol% Fe 的 WO3/SiO2-20 纳米复合材料在可见光照射下 90 分钟内的光催化还原能力显著提高。WO3 中 7.5 mol% 的 Fe3+ 离子掺杂物优化了电子-空穴重组,从而减少了 WO3 的光腐蚀。加入 SiO2 纳米粒子后,二元 WO3-SiO2 纳米复合材料同时发挥了吸附剂和光催化剂的作用,增加了比表面积。因此,掺杂了 7.5 mol% Fe 的 WO3/SiO2-20 纳米复合材料催化剂表面具有更多的活性位点,光催化还原能力显著增强。结果表明,最佳光催化剂的光催化还原率为 91.1%,光还原动力学速率为 21.1 × 10-3 min-1,比原始 WO3 快约四倍。因此,优选的最佳光催化剂具有可重复使用性,五个周期后活性仅下降 9.8%。我们的光催化剂具有很高的光催化性能和出色的稳定性,这表明它在水污染处理方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-performance photocatalytic reduction of Cr(VI) using a retrievable Fe-doped WO3/SiO2 heterostructure.

The enhancement of the photocatalytic performance of pristine WO3 was systematically adjusted due to its fast recombination rate and low reduction potential. A designed heterostructure photocatalyst was necessarily synthesised by Fe3+ metal ions doping into WO3 structure with and composition modification. In this study, we synthesised a retrievable Fe-doped WO3/SiO2 heterostructure using a surfactant-assisted hydrothermal method. This heterostructure was then employed as an effective photocatalyst for the removal of Cr(VI) under visible light irradiation. Enlarged photocatalytic reduction was observed over a synergetic 7.5 mol% Fe-doped WO3/SiO2-20 nanocomposite, resulting in dramatically increased activity compared with undoped WO3 and SiO2 nanomaterials under visible light illumination within 90 min. The presence of 7.5 mol% Fe3+ ion dopant in WO3 optimised electron-hole recombination, consequently reducing WO3 photocorrosion. After adding SiO2 nanoparticles, the binary WO3-SiO2 nanocomposite played roles as both adsorbent and photocatalyst to increase specific surface area. Thus, the 7.5 mol% Fe-doped WO3/SiO2-20 nanocomposite catalyst had more active sites on the surface of catalyst, and enhanced photocatalytic reduction was significantly achieved. The results showed 91.1% photocatalytic reduction over the optimum photocatalyst, with a photoreduction kinetic rate of 21.1 × 10-3 min-1, which was approximately four times faster than pristine WO3. Therefore, the superior optimal photocatalyst demonstrated reusability, with activities decreasing by only 9.8% after five cycles. The high photocatalytic performance and excellent stability of our photocatalyst indicate great potential for water pollution treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
A novel transdermal drug delivery system: drug-loaded ROS-responsive ferrocene fibers for effective photoprotective and wound healing activity. Exploitation of functionalized green nanomaterials for plant disease management. Antimicrobial efficacy of nano-particles for crop protection and sustainable agriculture. Effect of annealing temperature on the optoelectrical synapse behaviors of A-ZnO microtube. Anticandidal applications of selenium nanoparticles biosynthesized with Limosilactobacillus fermentum (OR553490).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1