利用交叉熵蒙特卡洛树搜索解决具有路由限制的最大覆盖问题

IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Autonomous Robots Pub Date : 2024-01-30 DOI:10.1007/s10514-024-10156-6
Pao-Te Lin, Kuo-Shih Tseng
{"title":"利用交叉熵蒙特卡洛树搜索解决具有路由限制的最大覆盖问题","authors":"Pao-Te Lin,&nbsp;Kuo-Shih Tseng","doi":"10.1007/s10514-024-10156-6","DOIUrl":null,"url":null,"abstract":"<div><p>Spatial search, and environmental monitoring are key technologies in robotics. These problems can be reformulated as maximal coverage problems with routing constraints, which are NP-hard problems. The generalized cost-benefit algorithm (GCB) can solve these problems with theoretical guarantees. To achieve better performance, evolutionary algorithms (EA) boost its performance via more samples. However, it is hard to know the terminal conditions of EA to outperform GCB. To solve these problems with theoretical guarantees and terminal conditions, in this research, the cross-entropy based Monte Carlo Tree Search algorithm (CE-MCTS) is proposed. It consists of three parts: the EA for sampling the branches, the upper confidence bound policy for selections, and the estimation of distribution algorithm for simulations. The experiments demonstrate that the CE-MCTS outperforms benchmark approaches (e.g., GCB, EAMC) in spatial search problems.\n</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal coverage problems with routing constraints using cross-entropy Monte Carlo tree search\",\"authors\":\"Pao-Te Lin,&nbsp;Kuo-Shih Tseng\",\"doi\":\"10.1007/s10514-024-10156-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spatial search, and environmental monitoring are key technologies in robotics. These problems can be reformulated as maximal coverage problems with routing constraints, which are NP-hard problems. The generalized cost-benefit algorithm (GCB) can solve these problems with theoretical guarantees. To achieve better performance, evolutionary algorithms (EA) boost its performance via more samples. However, it is hard to know the terminal conditions of EA to outperform GCB. To solve these problems with theoretical guarantees and terminal conditions, in this research, the cross-entropy based Monte Carlo Tree Search algorithm (CE-MCTS) is proposed. It consists of three parts: the EA for sampling the branches, the upper confidence bound policy for selections, and the estimation of distribution algorithm for simulations. The experiments demonstrate that the CE-MCTS outperforms benchmark approaches (e.g., GCB, EAMC) in spatial search problems.\\n</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-024-10156-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-024-10156-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

空间搜索和环境监测是机器人技术中的关键技术。这些问题可以被重新表述为带有路由约束的最大覆盖问题,是 NP 难问题。广义成本收益算法(GCB)可以在理论上保证解决这些问题。为了获得更好的性能,进化算法(EA)通过增加样本来提高性能。然而,我们很难知道 EA 优于 GCB 的最终条件。为了解决这些具有理论保证和终端条件的问题,本研究提出了基于交叉熵的蒙特卡洛树搜索算法(CE-MCTS)。该算法由三部分组成:用于分支采样的 EA、用于选择的置信上限策略和用于模拟的分布估计算法。实验证明,在空间搜索问题上,CE-MCTS 优于基准方法(如 GCB、EAMC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximal coverage problems with routing constraints using cross-entropy Monte Carlo tree search

Spatial search, and environmental monitoring are key technologies in robotics. These problems can be reformulated as maximal coverage problems with routing constraints, which are NP-hard problems. The generalized cost-benefit algorithm (GCB) can solve these problems with theoretical guarantees. To achieve better performance, evolutionary algorithms (EA) boost its performance via more samples. However, it is hard to know the terminal conditions of EA to outperform GCB. To solve these problems with theoretical guarantees and terminal conditions, in this research, the cross-entropy based Monte Carlo Tree Search algorithm (CE-MCTS) is proposed. It consists of three parts: the EA for sampling the branches, the upper confidence bound policy for selections, and the estimation of distribution algorithm for simulations. The experiments demonstrate that the CE-MCTS outperforms benchmark approaches (e.g., GCB, EAMC) in spatial search problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Autonomous Robots
Autonomous Robots 工程技术-机器人学
CiteScore
7.90
自引率
5.70%
发文量
46
审稿时长
3 months
期刊介绍: Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development. The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.
期刊最新文献
View: visual imitation learning with waypoints Safe and stable teleoperation of quadrotor UAVs under haptic shared autonomy Synthesizing compact behavior trees for probabilistic robotics domains Integrative biomechanics of a human–robot carrying task: implications for future collaborative work Mori-zwanzig approach for belief abstraction with application to belief space planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1