没有 I.I.D. 假设的量子态学习特性

Omar Fawzi, Richard Kueng, Damian Markham, Aadil Oufkir
{"title":"没有 I.I.D. 假设的量子态学习特性","authors":"Omar Fawzi, Richard Kueng, Damian Markham, Aadil Oufkir","doi":"arxiv-2401.16922","DOIUrl":null,"url":null,"abstract":"We develop a framework for learning properties of quantum states beyond the\nassumption of independent and identically distributed (i.i.d.) input states. We\nprove that, given any learning problem (under reasonable assumptions), an\nalgorithm designed for i.i.d. input states can be adapted to handle input\nstates of any nature, albeit at the expense of a polynomial increase in copy\ncomplexity. Furthermore, we establish that algorithms which perform\nnon-adaptive incoherent measurements can be extended to encompass non-i.i.d.\ninput states while maintaining comparable error probabilities. This allows us,\namong others applications, to generalize the classical shadows of Huang, Kueng,\nand Preskill to the non-i.i.d. setting at the cost of a small loss in\nefficiency. Additionally, we can efficiently verify any pure state using\nClifford measurements, in a way that is independent of the ideal state. Our\nmain techniques are based on de Finetti-style theorems supported by tools from\ninformation theory. In particular, we prove a new randomized local de Finetti\ntheorem that can be of independent interest.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Properties of Quantum States Without the I.I.D. Assumption\",\"authors\":\"Omar Fawzi, Richard Kueng, Damian Markham, Aadil Oufkir\",\"doi\":\"arxiv-2401.16922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a framework for learning properties of quantum states beyond the\\nassumption of independent and identically distributed (i.i.d.) input states. We\\nprove that, given any learning problem (under reasonable assumptions), an\\nalgorithm designed for i.i.d. input states can be adapted to handle input\\nstates of any nature, albeit at the expense of a polynomial increase in copy\\ncomplexity. Furthermore, we establish that algorithms which perform\\nnon-adaptive incoherent measurements can be extended to encompass non-i.i.d.\\ninput states while maintaining comparable error probabilities. This allows us,\\namong others applications, to generalize the classical shadows of Huang, Kueng,\\nand Preskill to the non-i.i.d. setting at the cost of a small loss in\\nefficiency. Additionally, we can efficiently verify any pure state using\\nClifford measurements, in a way that is independent of the ideal state. Our\\nmain techniques are based on de Finetti-style theorems supported by tools from\\ninformation theory. In particular, we prove a new randomized local de Finetti\\ntheorem that can be of independent interest.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.16922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.16922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一个学习量子态特性的框架,它超越了独立且同分布(i.i.d.)输入态的假设。我们证明,给定任何学习问题(在合理的假设条件下),为 i.i.d. 输入态设计的分析算法都能适应处理任何性质的输入态,尽管代价是复制复杂性的多项式增加。此外,我们还发现,执行非自适应非相干测量的算法可以扩展到非 i.i.d.input 状态,同时保持相似的错误概率。这使得我们能将 Huang、Kueng 和 Preskill 的经典阴影推广到非 i.i.d. 环境,但代价是少量的低效率损失。此外,我们还能利用克里福德测量法,以一种与理想状态无关的方式,有效地验证任何纯状态。我们的主要技术基于信息论工具支持的德菲内蒂式定理。特别是,我们证明了一个新的随机化局部德菲内蒂定理,它可以引起独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Properties of Quantum States Without the I.I.D. Assumption
We develop a framework for learning properties of quantum states beyond the assumption of independent and identically distributed (i.i.d.) input states. We prove that, given any learning problem (under reasonable assumptions), an algorithm designed for i.i.d. input states can be adapted to handle input states of any nature, albeit at the expense of a polynomial increase in copy complexity. Furthermore, we establish that algorithms which perform non-adaptive incoherent measurements can be extended to encompass non-i.i.d. input states while maintaining comparable error probabilities. This allows us, among others applications, to generalize the classical shadows of Huang, Kueng, and Preskill to the non-i.i.d. setting at the cost of a small loss in efficiency. Additionally, we can efficiently verify any pure state using Clifford measurements, in a way that is independent of the ideal state. Our main techniques are based on de Finetti-style theorems supported by tools from information theory. In particular, we prove a new randomized local de Finetti theorem that can be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision-based designs for sequential randomized experiments Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations Stability of a Generalized Debiased Lasso with Applications to Resampling-Based Variable Selection Tuning parameter selection in econometrics Limiting Behavior of Maxima under Dependence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1