2022 年 9 月 5 日泸定 MS6.8 级地震的地面运动特征和近断层效应分析

IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Journal of Seismology Pub Date : 2024-01-31 DOI:10.1007/s10950-024-10194-8
Dexin Lin, Qiang Ma, Quancai Xie, Junjie Zhang, Dongwang Tao
{"title":"2022 年 9 月 5 日泸定 MS6.8 级地震的地面运动特征和近断层效应分析","authors":"Dexin Lin,&nbsp;Qiang Ma,&nbsp;Quancai Xie,&nbsp;Junjie Zhang,&nbsp;Dongwang Tao","doi":"10.1007/s10950-024-10194-8","DOIUrl":null,"url":null,"abstract":"<div><p>Using the three component acceleration records of the National Strong Motion Observation Network System (NSMONS) and the National Seismic Intensity Rapid Reporting and Earthquake Early Warning Network, the ground motion attenuation characteristics, spatial distribution, source rupture direction, and near-fault pulse characteristics of the Luding <i>M</i><sub>S</sub>6.8 earthquake were analyzed. Comparing the observed values of peak ground acceleration (PGA), peak ground velocity (PGV), pseudo-spectral acceleration (PSA), and 90% significant duration (SD) with several typical ground motion prediction equations (GMPE), it was found that the ground motion attenuation characteristics of this earthquake are consistent with GMPE for the southwest region, but overall lower than the global model average level. In the comparison of between-event residuals, this earthquake exhibits different characteristics from the same magnitude thrust type earthquake. The within-event residuals reflect that the anelastic attenuation in the Luding region is slightly weaker than that in the Menyuan region. In terms of spatial distribution of ground motion parameters, the PGV and PSA with a period of 1.0 to 8.0 s have significantly higher intensity in the southeast direction of the epicenter than in other directions. Based on PGV, it is speculated that the source rupture direction of the earthquake was 151°, which is close to the fault strike of 163°. Pulse-like ground motions were identified in up to 12 sets of near-fault records with pulse periods significantly lower than historical earthquakes of similar magnitudes. Stations with pulse peak values greater than 40 cm·s<sup>−1</sup> in the pulse dominant direction of the velocity time history all appeared in the narrow band area ahead of the rupture direction. The distribution area of near-fault pulses is highly correlated with the distribution of high macroseismic intensity areas and landslide areas, and it is necessary to pay attention to the impact of near-fault pulses in seismic fortification.</p></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of ground motion characteristics and near-fault effects for the September 5, 2022, MS6.8 Luding earthquake\",\"authors\":\"Dexin Lin,&nbsp;Qiang Ma,&nbsp;Quancai Xie,&nbsp;Junjie Zhang,&nbsp;Dongwang Tao\",\"doi\":\"10.1007/s10950-024-10194-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using the three component acceleration records of the National Strong Motion Observation Network System (NSMONS) and the National Seismic Intensity Rapid Reporting and Earthquake Early Warning Network, the ground motion attenuation characteristics, spatial distribution, source rupture direction, and near-fault pulse characteristics of the Luding <i>M</i><sub>S</sub>6.8 earthquake were analyzed. Comparing the observed values of peak ground acceleration (PGA), peak ground velocity (PGV), pseudo-spectral acceleration (PSA), and 90% significant duration (SD) with several typical ground motion prediction equations (GMPE), it was found that the ground motion attenuation characteristics of this earthquake are consistent with GMPE for the southwest region, but overall lower than the global model average level. In the comparison of between-event residuals, this earthquake exhibits different characteristics from the same magnitude thrust type earthquake. The within-event residuals reflect that the anelastic attenuation in the Luding region is slightly weaker than that in the Menyuan region. In terms of spatial distribution of ground motion parameters, the PGV and PSA with a period of 1.0 to 8.0 s have significantly higher intensity in the southeast direction of the epicenter than in other directions. Based on PGV, it is speculated that the source rupture direction of the earthquake was 151°, which is close to the fault strike of 163°. Pulse-like ground motions were identified in up to 12 sets of near-fault records with pulse periods significantly lower than historical earthquakes of similar magnitudes. Stations with pulse peak values greater than 40 cm·s<sup>−1</sup> in the pulse dominant direction of the velocity time history all appeared in the narrow band area ahead of the rupture direction. The distribution area of near-fault pulses is highly correlated with the distribution of high macroseismic intensity areas and landslide areas, and it is necessary to pay attention to the impact of near-fault pulses in seismic fortification.</p></div>\",\"PeriodicalId\":16994,\"journal\":{\"name\":\"Journal of Seismology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Seismology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10950-024-10194-8\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-024-10194-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

利用国家强震观测网系统(NSMONS)和国家地震烈度速报与地震预警网的三分量加速度记录,分析了泸定MS6.8地震的地动衰减特征、空间分布、震源破裂方向和近断层脉冲特征。将地面峰值加速度(PGA)、地面峰值速度(PGV)、伪谱加速度(PSA)和 90%显著持续时间(SD)的观测值与几种典型的地面运动预测方程(GMPE)进行比较,发现此次地震的地面运动衰减特征与西南地区的 GMPE 一致,但总体上低于全球模型的平均水平。在事件间残差比较中,本次地震表现出与同级推力型地震不同的特征。事件内残差反映出泸定地区的非弹性衰减略弱于门源地区。从地震动参数的空间分布来看,周期为 1.0~8.0 秒的 PGV 和 PSA 在震中东南方向的强度明显高于其他方向。根据 PGV 推测,震源断裂方向为 151°,与断层走向 163°接近。在多达 12 组近断层记录中发现了脉冲地动,其脉冲周期明显低于历史上类似震级的地震。在速度时间历程的脉冲主导方向上,脉冲峰值大于 40 cm-s-1 的台站均出现在断裂方向前方的窄带区域。近断层脉冲分布区与宏观地震高烈度区和滑坡区的分布高度相关,在抗震设防中需要重视近断层脉冲的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of ground motion characteristics and near-fault effects for the September 5, 2022, MS6.8 Luding earthquake

Using the three component acceleration records of the National Strong Motion Observation Network System (NSMONS) and the National Seismic Intensity Rapid Reporting and Earthquake Early Warning Network, the ground motion attenuation characteristics, spatial distribution, source rupture direction, and near-fault pulse characteristics of the Luding MS6.8 earthquake were analyzed. Comparing the observed values of peak ground acceleration (PGA), peak ground velocity (PGV), pseudo-spectral acceleration (PSA), and 90% significant duration (SD) with several typical ground motion prediction equations (GMPE), it was found that the ground motion attenuation characteristics of this earthquake are consistent with GMPE for the southwest region, but overall lower than the global model average level. In the comparison of between-event residuals, this earthquake exhibits different characteristics from the same magnitude thrust type earthquake. The within-event residuals reflect that the anelastic attenuation in the Luding region is slightly weaker than that in the Menyuan region. In terms of spatial distribution of ground motion parameters, the PGV and PSA with a period of 1.0 to 8.0 s have significantly higher intensity in the southeast direction of the epicenter than in other directions. Based on PGV, it is speculated that the source rupture direction of the earthquake was 151°, which is close to the fault strike of 163°. Pulse-like ground motions were identified in up to 12 sets of near-fault records with pulse periods significantly lower than historical earthquakes of similar magnitudes. Stations with pulse peak values greater than 40 cm·s−1 in the pulse dominant direction of the velocity time history all appeared in the narrow band area ahead of the rupture direction. The distribution area of near-fault pulses is highly correlated with the distribution of high macroseismic intensity areas and landslide areas, and it is necessary to pay attention to the impact of near-fault pulses in seismic fortification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Seismology
Journal of Seismology 地学-地球化学与地球物理
CiteScore
3.30
自引率
6.20%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence. Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.
期刊最新文献
Source parameters of the May 28, 2016, Mihoub earthquake (Mw 5.4, Algeria) deduced from Bayesian modelling of Sentinel-1 SAR data Fault imaging using earthquake sequences: a revised seismotectonic model for the Albstadt Shear Zone, Southwest Germany A logic-tree based probabilistic seismic hazard assessment for the central ionian islands of cephalonia and ithaca (Western Greece) Developing machine learning-based ground motion models to predict peak ground velocity in Turkiye Fault structures of the Haichenghe fault zone in Liaoning, China from high-precision location based on dense array observation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1