{"title":"城市地铁微生物群落的特征:室内环境质量和公共卫生的内涵","authors":"Yongping Liu, Lijun Zhang, Duo Wang, Yewen Shi, Ling Tong, Feier Chen, Xiaojing Li, Chunyang Dong, Jianghua Zhang","doi":"10.1007/s11869-024-01515-4","DOIUrl":null,"url":null,"abstract":"<div><p>Metagenomics is a novel genomic tool employed to accurately study the composition of microbial communities in their ecological environments, including mass transport systems. Despite the potential significance of these sites as sources of exposure, the pathogenic microbiomes in these constructed settings remain unexplored. In this study, high-throughput sequencing was utilized to identify the microbiota obtained from the Metropolitan Transport of Shanghai (MTS) during the spring and summer. A diverse range of microbiota, especially pathogens, and models for mapping diversity and environmental variables were analyzed using the metagenomic techniques. The results indicate that bacteria accounted for 95.26% of the categorized genes in the 108 aerosol samples analyzed during the spring and summer, with the remaining 4.73% attributed to eukaryotes, viruses, and archaea. We successfully identified 86 microorganisms that align with the National Microbiology Data Center's List of Pathogenic Microorganisms, uncovering unique characteristics of various species with potential health implications throughout across seasons. Additionally, the distribution and diversity of the microbiota were significantly influenced by temperature, humidity, season, and time of day. The study's findings establish a framework for investigating and evaluating potential public health risks, offering early warning of biosecurity concerns related to these built environments. They also provide a comprehensive and unbiased perspective on the characteristics of microbial communities and potential pathogens in urban metros. Environmental and public health experts will find this investigation into the pathogenic microbiomes found in aerosol samples compelling.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of microbial communities in urban subway: connotation for indoor environment quality and public health\",\"authors\":\"Yongping Liu, Lijun Zhang, Duo Wang, Yewen Shi, Ling Tong, Feier Chen, Xiaojing Li, Chunyang Dong, Jianghua Zhang\",\"doi\":\"10.1007/s11869-024-01515-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metagenomics is a novel genomic tool employed to accurately study the composition of microbial communities in their ecological environments, including mass transport systems. Despite the potential significance of these sites as sources of exposure, the pathogenic microbiomes in these constructed settings remain unexplored. In this study, high-throughput sequencing was utilized to identify the microbiota obtained from the Metropolitan Transport of Shanghai (MTS) during the spring and summer. A diverse range of microbiota, especially pathogens, and models for mapping diversity and environmental variables were analyzed using the metagenomic techniques. The results indicate that bacteria accounted for 95.26% of the categorized genes in the 108 aerosol samples analyzed during the spring and summer, with the remaining 4.73% attributed to eukaryotes, viruses, and archaea. We successfully identified 86 microorganisms that align with the National Microbiology Data Center's List of Pathogenic Microorganisms, uncovering unique characteristics of various species with potential health implications throughout across seasons. Additionally, the distribution and diversity of the microbiota were significantly influenced by temperature, humidity, season, and time of day. The study's findings establish a framework for investigating and evaluating potential public health risks, offering early warning of biosecurity concerns related to these built environments. They also provide a comprehensive and unbiased perspective on the characteristics of microbial communities and potential pathogens in urban metros. Environmental and public health experts will find this investigation into the pathogenic microbiomes found in aerosol samples compelling.</p></div>\",\"PeriodicalId\":49109,\"journal\":{\"name\":\"Air Quality Atmosphere and Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Quality Atmosphere and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11869-024-01515-4\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-024-01515-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Characterization of microbial communities in urban subway: connotation for indoor environment quality and public health
Metagenomics is a novel genomic tool employed to accurately study the composition of microbial communities in their ecological environments, including mass transport systems. Despite the potential significance of these sites as sources of exposure, the pathogenic microbiomes in these constructed settings remain unexplored. In this study, high-throughput sequencing was utilized to identify the microbiota obtained from the Metropolitan Transport of Shanghai (MTS) during the spring and summer. A diverse range of microbiota, especially pathogens, and models for mapping diversity and environmental variables were analyzed using the metagenomic techniques. The results indicate that bacteria accounted for 95.26% of the categorized genes in the 108 aerosol samples analyzed during the spring and summer, with the remaining 4.73% attributed to eukaryotes, viruses, and archaea. We successfully identified 86 microorganisms that align with the National Microbiology Data Center's List of Pathogenic Microorganisms, uncovering unique characteristics of various species with potential health implications throughout across seasons. Additionally, the distribution and diversity of the microbiota were significantly influenced by temperature, humidity, season, and time of day. The study's findings establish a framework for investigating and evaluating potential public health risks, offering early warning of biosecurity concerns related to these built environments. They also provide a comprehensive and unbiased perspective on the characteristics of microbial communities and potential pathogens in urban metros. Environmental and public health experts will find this investigation into the pathogenic microbiomes found in aerosol samples compelling.
期刊介绍:
Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health.
It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes.
International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals.
Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements.
This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.