{"title":"无界线性算子的正规矩阵","authors":"Paolo Leonetti","doi":"10.1017/prm.2024.1","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><span data-mathjax-type=\"texmath\"><span>$X,\\,Y$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline1.png\"/></span></span> be Banach spaces and fix a linear operator <span><span><span data-mathjax-type=\"texmath\"><span>$T \\in \\mathcal {L}(X,\\,Y)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline2.png\"/></span></span> and ideals <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {I},\\, \\mathcal {J}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline3.png\"/></span></span> on the nonnegative integers. We obtain Silverman–Toeplitz type theorems on matrices <span><span><span data-mathjax-type=\"texmath\"><span>$A=(A_{n,k}: n,\\,k \\in \\omega )$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline4.png\"/></span></span> of linear operators in <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {L}(X,\\,Y)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline5.png\"/></span></span>, so that<span><span data-mathjax-type=\"texmath\"><span>\\[ \\mathcal{J}\\text{-}\\lim A\\boldsymbol{x}=T(\\mathcal{I}\\text{-}\\lim \\boldsymbol{x}) \\]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_eqnU1.png\"/></span>for every <span><span><span data-mathjax-type=\"texmath\"><span>$X$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline6.png\"/></span></span>-valued sequence <span><span><span data-mathjax-type=\"texmath\"><span>$\\boldsymbol {x}=(x_0,\\,x_1,\\,\\ldots )$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline7.png\"/></span></span> which is <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {I}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline8.png\"/></span></span>-convergent (and bounded). This allows us to establish the relationship between the classical Silverman–Toeplitz characterization of regular matrices and its multidimensional analogue for double sequences, its variant for matrices of linear operators, and the recent version (for the scalar case) in the context of ideal convergence. As byproducts, we obtain characterizations of several matrix classes and a generalization of the classical Hahn–Schur theorem. In the proofs we use an ideal version of the Banach–Steinhaus theorem which has been recently obtained by De Bondt and Vernaeve [J. Math. Anal. Appl. <span>495</span> (2021)].</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"32 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regular matrices of unbounded linear operators\",\"authors\":\"Paolo Leonetti\",\"doi\":\"10.1017/prm.2024.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$X,\\\\,Y$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline1.png\\\"/></span></span> be Banach spaces and fix a linear operator <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$T \\\\in \\\\mathcal {L}(X,\\\\,Y)$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline2.png\\\"/></span></span> and ideals <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {I},\\\\, \\\\mathcal {J}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline3.png\\\"/></span></span> on the nonnegative integers. We obtain Silverman–Toeplitz type theorems on matrices <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$A=(A_{n,k}: n,\\\\,k \\\\in \\\\omega )$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline4.png\\\"/></span></span> of linear operators in <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {L}(X,\\\\,Y)$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline5.png\\\"/></span></span>, so that<span><span data-mathjax-type=\\\"texmath\\\"><span>\\\\[ \\\\mathcal{J}\\\\text{-}\\\\lim A\\\\boldsymbol{x}=T(\\\\mathcal{I}\\\\text{-}\\\\lim \\\\boldsymbol{x}) \\\\]</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_eqnU1.png\\\"/></span>for every <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$X$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline6.png\\\"/></span></span>-valued sequence <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\boldsymbol {x}=(x_0,\\\\,x_1,\\\\,\\\\ldots )$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline7.png\\\"/></span></span> which is <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal {I}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline8.png\\\"/></span></span>-convergent (and bounded). This allows us to establish the relationship between the classical Silverman–Toeplitz characterization of regular matrices and its multidimensional analogue for double sequences, its variant for matrices of linear operators, and the recent version (for the scalar case) in the context of ideal convergence. As byproducts, we obtain characterizations of several matrix classes and a generalization of the classical Hahn–Schur theorem. In the proofs we use an ideal version of the Banach–Steinhaus theorem which has been recently obtained by De Bondt and Vernaeve [J. Math. Anal. Appl. <span>495</span> (2021)].</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let $X,\,Y$ be Banach spaces and fix a linear operator $T \in \mathcal {L}(X,\,Y)$ and ideals $\mathcal {I},\, \mathcal {J}$ on the nonnegative integers. We obtain Silverman–Toeplitz type theorems on matrices $A=(A_{n,k}: n,\,k \in \omega )$ of linear operators in $\mathcal {L}(X,\,Y)$, so that\[ \mathcal{J}\text{-}\lim A\boldsymbol{x}=T(\mathcal{I}\text{-}\lim \boldsymbol{x}) \]for every $X$-valued sequence $\boldsymbol {x}=(x_0,\,x_1,\,\ldots )$ which is $\mathcal {I}$-convergent (and bounded). This allows us to establish the relationship between the classical Silverman–Toeplitz characterization of regular matrices and its multidimensional analogue for double sequences, its variant for matrices of linear operators, and the recent version (for the scalar case) in the context of ideal convergence. As byproducts, we obtain characterizations of several matrix classes and a generalization of the classical Hahn–Schur theorem. In the proofs we use an ideal version of the Banach–Steinhaus theorem which has been recently obtained by De Bondt and Vernaeve [J. Math. Anal. Appl. 495 (2021)].
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.