含氧生物燃料添加剂对实验室规模烟尘排放的影响概述

IF 7.2 2区 工程技术 Q1 CHEMISTRY, APPLIED Fuel Processing Technology Pub Date : 2024-02-01 DOI:10.1016/j.fuproc.2024.108046
Zhiqing Zhang , Jingyi Hu , Dexing Zhang , Guohai Jia , Bin Zhang , Su Wang , Weihuang Zhong , Ziheng Zhao , Jian Zhang
{"title":"含氧生物燃料添加剂对实验室规模烟尘排放的影响概述","authors":"Zhiqing Zhang ,&nbsp;Jingyi Hu ,&nbsp;Dexing Zhang ,&nbsp;Guohai Jia ,&nbsp;Bin Zhang ,&nbsp;Su Wang ,&nbsp;Weihuang Zhong ,&nbsp;Ziheng Zhao ,&nbsp;Jian Zhang","doi":"10.1016/j.fuproc.2024.108046","DOIUrl":null,"url":null,"abstract":"<div><p>Soot has harmful effects on the environment and human health. The formation process of soot includes six steps: fuel pyrolysis, soot nucleation, coalescence, surface growth, aggregation, and soot oxidation. However, the formation of soot is very complex and is influenced by factors such as fuel type, combustion conditions, and environmental temperature. Oxygenated fuels additives have a positive effect on reducing soot emissions, but recent studies have shown that oxygenated fuels can lead to an increase in the number of small particles of soot. In this paper, the effect of oxygenated fuel additives such as alcohol, ether, and esters on soot emissions is discussed in terms of the mechanism of soot formation. Subsequently, the role of after-treatment systems in reducing soot emissions is summarized. This work can update our understanding of the impact of oxygenated fuels on soot emissions.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"254 ","pages":"Article 108046"},"PeriodicalIF":7.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S037838202400016X/pdfft?md5=6d4bf9d50b0d8118600b8f5499f0b862&pid=1-s2.0-S037838202400016X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Overview of the impact of oxygenated biofuel additives on soot emissions in laboratory scale\",\"authors\":\"Zhiqing Zhang ,&nbsp;Jingyi Hu ,&nbsp;Dexing Zhang ,&nbsp;Guohai Jia ,&nbsp;Bin Zhang ,&nbsp;Su Wang ,&nbsp;Weihuang Zhong ,&nbsp;Ziheng Zhao ,&nbsp;Jian Zhang\",\"doi\":\"10.1016/j.fuproc.2024.108046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soot has harmful effects on the environment and human health. The formation process of soot includes six steps: fuel pyrolysis, soot nucleation, coalescence, surface growth, aggregation, and soot oxidation. However, the formation of soot is very complex and is influenced by factors such as fuel type, combustion conditions, and environmental temperature. Oxygenated fuels additives have a positive effect on reducing soot emissions, but recent studies have shown that oxygenated fuels can lead to an increase in the number of small particles of soot. In this paper, the effect of oxygenated fuel additives such as alcohol, ether, and esters on soot emissions is discussed in terms of the mechanism of soot formation. Subsequently, the role of after-treatment systems in reducing soot emissions is summarized. This work can update our understanding of the impact of oxygenated fuels on soot emissions.</p></div>\",\"PeriodicalId\":326,\"journal\":{\"name\":\"Fuel Processing Technology\",\"volume\":\"254 \",\"pages\":\"Article 108046\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S037838202400016X/pdfft?md5=6d4bf9d50b0d8118600b8f5499f0b862&pid=1-s2.0-S037838202400016X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Processing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037838202400016X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037838202400016X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

烟尘对环境和人类健康有害。烟尘的形成过程包括六个步骤:燃料热解、烟尘成核、凝聚、表面生长、聚集和烟尘氧化。然而,烟尘的形成非常复杂,受燃料类型、燃烧条件和环境温度等因素的影响。含氧燃料添加剂对减少烟尘排放有积极作用,但最近的研究表明,含氧燃料会导致烟尘小颗粒数量增加。本文从烟尘形成的机理出发,讨论了含氧燃料添加剂(如醇、醚和酯)对烟尘排放的影响。随后,总结了后处理系统在减少烟尘排放方面的作用。这项工作可以更新我们对含氧燃料对烟尘排放影响的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overview of the impact of oxygenated biofuel additives on soot emissions in laboratory scale

Soot has harmful effects on the environment and human health. The formation process of soot includes six steps: fuel pyrolysis, soot nucleation, coalescence, surface growth, aggregation, and soot oxidation. However, the formation of soot is very complex and is influenced by factors such as fuel type, combustion conditions, and environmental temperature. Oxygenated fuels additives have a positive effect on reducing soot emissions, but recent studies have shown that oxygenated fuels can lead to an increase in the number of small particles of soot. In this paper, the effect of oxygenated fuel additives such as alcohol, ether, and esters on soot emissions is discussed in terms of the mechanism of soot formation. Subsequently, the role of after-treatment systems in reducing soot emissions is summarized. This work can update our understanding of the impact of oxygenated fuels on soot emissions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel Processing Technology
Fuel Processing Technology 工程技术-工程:化工
CiteScore
13.20
自引率
9.30%
发文量
398
审稿时长
26 days
期刊介绍: Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.
期刊最新文献
Sustainable production of biohydrogen: Feedstock, pretreatment methods, production processes, and environmental impact An experimental evaluation of thermophysical properties of colloidal suspension of carbon-rich fly ash microparticles and single-walled carbon nanotubes in Jet-A fuel and its impact on evaporation and burning rate Microwave-assisted biodiesel synthesis from waste cooking oil: Exploring the potential of carob pod-derived solid base catalyst Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over Co-Ce-Zr ternary metal solid solution A bifunctional catalyst for direct CO2 conversion to clean fuels: Mechanistic insights and a comprehensive kinetic model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1