基于氧化铁和氧化硼的陶瓷减摩涂层的摩擦力学性能

IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL Journal of Friction and Wear Pub Date : 2024-01-30 DOI:10.3103/s1068366623050045
A. G. Ipatov, E. V. Kharanzhevskiy, S. N. Shmykov, K. G. Volkov
{"title":"基于氧化铁和氧化硼的陶瓷减摩涂层的摩擦力学性能","authors":"A. G. Ipatov, E. V. Kharanzhevskiy, S. N. Shmykov, K. G. Volkov","doi":"10.3103/s1068366623050045","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">\n<b>Abstract</b>—</h3><p>The work is devoted to the study of the tribological properties of functional coatings based on the FeO oxide matrix, additionally doped with boron oxide B<sub>2</sub>O<sub>3</sub> and zirconium dioxide ZrO<sub>2</sub>. The coatings are obtained by highly concentrated short-pulse laser processing of powder compositions previously applied to metal surfaces. The resulting coatings are subject to wear tests under conditions of dry sliding friction with fixation of the friction coefficient, depending on the applied load and the composition of the powder composition. The results give an idea of the degree of change in the coefficient of friction of coatings depending on the powder compositions, as well as their alloying. It has been confirmed that additional alloying with boron oxide has a positive effect on the tribological performance of the coating; in particular, the introduction of 4% boron oxide reduces the coefficient of dry sliding friction to a unique 0.09–0.10. At the same time, a more stable scuffing resistance of friction surfaces is observed, confirmed by studies of surface roughness after testing. A feature of the tribological behavior of the coatings under study is the excessively high temperature background of the tests, reaching 300°C. High temperature and the presence of oxide structures are a catalyst for the formation of stable tribological structures between the rubbing surfaces. The nature of the tribostructures is self-organizing in a “glaze” type and has the property of recovery under friction conditions. After the formation of tribostructures in the friction zone, a significant decrease in temperature and an abrupt decrease in the friction coefficient are observed. With an increase in the amount of boron oxide, the friction coefficient does not decrease so significantly and the minimum value of the dry friction coefficient corresponds to 0.14–0.15, which is caused by a decrease in the cohesive strength of the coating.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tribotechnical Properties of Ceramic Antifriction Coatings Based on Iron Oxide and Boron Oxide\",\"authors\":\"A. G. Ipatov, E. V. Kharanzhevskiy, S. N. Shmykov, K. G. Volkov\",\"doi\":\"10.3103/s1068366623050045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">\\n<b>Abstract</b>—</h3><p>The work is devoted to the study of the tribological properties of functional coatings based on the FeO oxide matrix, additionally doped with boron oxide B<sub>2</sub>O<sub>3</sub> and zirconium dioxide ZrO<sub>2</sub>. The coatings are obtained by highly concentrated short-pulse laser processing of powder compositions previously applied to metal surfaces. The resulting coatings are subject to wear tests under conditions of dry sliding friction with fixation of the friction coefficient, depending on the applied load and the composition of the powder composition. The results give an idea of the degree of change in the coefficient of friction of coatings depending on the powder compositions, as well as their alloying. It has been confirmed that additional alloying with boron oxide has a positive effect on the tribological performance of the coating; in particular, the introduction of 4% boron oxide reduces the coefficient of dry sliding friction to a unique 0.09–0.10. At the same time, a more stable scuffing resistance of friction surfaces is observed, confirmed by studies of surface roughness after testing. A feature of the tribological behavior of the coatings under study is the excessively high temperature background of the tests, reaching 300°C. High temperature and the presence of oxide structures are a catalyst for the formation of stable tribological structures between the rubbing surfaces. The nature of the tribostructures is self-organizing in a “glaze” type and has the property of recovery under friction conditions. After the formation of tribostructures in the friction zone, a significant decrease in temperature and an abrupt decrease in the friction coefficient are observed. With an increase in the amount of boron oxide, the friction coefficient does not decrease so significantly and the minimum value of the dry friction coefficient corresponds to 0.14–0.15, which is caused by a decrease in the cohesive strength of the coating.</p>\",\"PeriodicalId\":633,\"journal\":{\"name\":\"Journal of Friction and Wear\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Friction and Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068366623050045\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Friction and Wear","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3103/s1068366623050045","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要--这项工作致力于研究以氧化铁为基体,额外掺杂氧化硼 B2O3 和二氧化锆 ZrO2 的功能涂层的摩擦学特性。这些涂层是通过高浓度短脉冲激光加工之前用于金属表面的粉末成分获得的。根据所施加的载荷和粉末成分的不同,在干滑动摩擦条件下对所得涂层进行磨损测试,并确定摩擦系数。结果表明,涂层摩擦系数的变化程度取决于粉末成分及其合金化程度。经证实,添加氧化硼合金对涂层的摩擦学性能有积极影响;特别是,添加 4% 的氧化硼可将干滑动摩擦系数降低到 0.09-0.10 的独特水平。同时,摩擦表面的耐擦伤性也更加稳定,测试后的表面粗糙度研究也证实了这一点。所研究涂层摩擦学行为的一个特点是测试背景温度过高,达到 300°C。高温和氧化结构的存在是摩擦表面之间形成稳定摩擦学结构的催化剂。三结构的性质是 "釉 "型自组织,并具有在摩擦条件下恢复的特性。摩擦区形成三重结构后,温度会显著降低,摩擦系数也会突然下降。随着氧化硼用量的增加,摩擦系数并没有明显下降,干摩擦系数的最小值为 0.14-0.15,这是因为涂层的内聚强度降低了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tribotechnical Properties of Ceramic Antifriction Coatings Based on Iron Oxide and Boron Oxide

Abstract

The work is devoted to the study of the tribological properties of functional coatings based on the FeO oxide matrix, additionally doped with boron oxide B2O3 and zirconium dioxide ZrO2. The coatings are obtained by highly concentrated short-pulse laser processing of powder compositions previously applied to metal surfaces. The resulting coatings are subject to wear tests under conditions of dry sliding friction with fixation of the friction coefficient, depending on the applied load and the composition of the powder composition. The results give an idea of the degree of change in the coefficient of friction of coatings depending on the powder compositions, as well as their alloying. It has been confirmed that additional alloying with boron oxide has a positive effect on the tribological performance of the coating; in particular, the introduction of 4% boron oxide reduces the coefficient of dry sliding friction to a unique 0.09–0.10. At the same time, a more stable scuffing resistance of friction surfaces is observed, confirmed by studies of surface roughness after testing. A feature of the tribological behavior of the coatings under study is the excessively high temperature background of the tests, reaching 300°C. High temperature and the presence of oxide structures are a catalyst for the formation of stable tribological structures between the rubbing surfaces. The nature of the tribostructures is self-organizing in a “glaze” type and has the property of recovery under friction conditions. After the formation of tribostructures in the friction zone, a significant decrease in temperature and an abrupt decrease in the friction coefficient are observed. With an increase in the amount of boron oxide, the friction coefficient does not decrease so significantly and the minimum value of the dry friction coefficient corresponds to 0.14–0.15, which is caused by a decrease in the cohesive strength of the coating.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Friction and Wear
Journal of Friction and Wear ENGINEERING, MECHANICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
1.50
自引率
28.60%
发文量
21
审稿时长
6-12 weeks
期刊介绍: Journal of Friction and Wear is intended to bring together researchers and practitioners working in tribology. It provides novel information on science, practice, and technology of lubrication, wear prevention, and friction control. Papers cover tribological problems of physics, chemistry, materials science, and mechanical engineering, discussing issues from a fundamental or technological point of view.
期刊最新文献
Abrasive Wear of Rubbers Based on Natural Rubber, Carbon Black, and Polyoxadiazole Fiber Microstructure and Coefficient of Friction of Silumins Obtained by Rapid Solidification Radiospectroscopic Study of Used Marine Oils Experimental Study of the Effect of Humidity on Structural Changes of the “Third Body” during Friction Efficiency of Antifriction Solid Lubricant Coatings for Metal–Polymer Friction Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1