V. V. Efremov, O. S. Bondareva, O. S. Dobychina, C. K. Pilla
{"title":"锌涂层的结构、粗糙度、显微硬度和摩擦系数对螺纹连接拧紧扭矩的影响","authors":"V. V. Efremov, O. S. Bondareva, O. S. Dobychina, C. K. Pilla","doi":"10.3103/S1068366623050021","DOIUrl":null,"url":null,"abstract":"<p>Samples of fasteners were studied: bolts, nuts, and washers with a zinc coating applied in various ways, namely galvanic, thermal diffusion, gas thermal, hot galvanization in molten zinc and in melt galfan (Zn + 5% Al), as well as with zinc lamellar coating. Data on roughness, microhardness, and friction coefficient of zinc coatings were obtained. It has been established that the thermal diffusion coating has the greatest hardness, and the coating obtained by hot-dip galvanizing in molten zinc has the least hardness. Maximum roughness <i>R</i><sub><i>a</i></sub> is observed in gas-thermal and thermal-diffusion coatings. The lowest roughness is found in coatings obtained by hot-dip galvanizing and galvanic deposition. The friction coefficients of coatings were studied in finger-disk geometry for all types of coatings. It has been established that zinc-lamella and thermal diffusion coatings have the highest coefficient of friction, and the lowest, gas-thermal coating and those obtained by hot-dip galvanizing. The nominal tightening torques for M3, M10, and M16 bolts are calculated. It has been established that the tightening torque of coatings applied by hot-dip galvanizing in molten zinc and gas-thermal spraying complies with the standards of RD 37.001.131–89. For other coatings, the friction coefficient requires adjustment through the use of lubricants or the application of additional coatings. The results can be used when choosing a zinc coating for fasteners.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"44 5","pages":"304 - 308"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Structure, Roughness, Microhardness, and Friction Coefficient of Zinc Coating on the Tightening Torque of a Threaded Connection\",\"authors\":\"V. V. Efremov, O. S. Bondareva, O. S. Dobychina, C. K. Pilla\",\"doi\":\"10.3103/S1068366623050021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Samples of fasteners were studied: bolts, nuts, and washers with a zinc coating applied in various ways, namely galvanic, thermal diffusion, gas thermal, hot galvanization in molten zinc and in melt galfan (Zn + 5% Al), as well as with zinc lamellar coating. Data on roughness, microhardness, and friction coefficient of zinc coatings were obtained. It has been established that the thermal diffusion coating has the greatest hardness, and the coating obtained by hot-dip galvanizing in molten zinc has the least hardness. Maximum roughness <i>R</i><sub><i>a</i></sub> is observed in gas-thermal and thermal-diffusion coatings. The lowest roughness is found in coatings obtained by hot-dip galvanizing and galvanic deposition. The friction coefficients of coatings were studied in finger-disk geometry for all types of coatings. It has been established that zinc-lamella and thermal diffusion coatings have the highest coefficient of friction, and the lowest, gas-thermal coating and those obtained by hot-dip galvanizing. The nominal tightening torques for M3, M10, and M16 bolts are calculated. It has been established that the tightening torque of coatings applied by hot-dip galvanizing in molten zinc and gas-thermal spraying complies with the standards of RD 37.001.131–89. For other coatings, the friction coefficient requires adjustment through the use of lubricants or the application of additional coatings. The results can be used when choosing a zinc coating for fasteners.</p>\",\"PeriodicalId\":633,\"journal\":{\"name\":\"Journal of Friction and Wear\",\"volume\":\"44 5\",\"pages\":\"304 - 308\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Friction and Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068366623050021\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Friction and Wear","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S1068366623050021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
摘要--对螺栓、螺母和垫圈等紧固件样品进行了研究,这些紧固件的锌镀层有多种涂覆方式,即电镀、热扩散、气热、熔融锌热镀锌和熔融加尔凡(锌+5%铝)镀锌,以及片状锌镀层。获得了锌镀层的粗糙度、显微硬度和摩擦系数数据。结果表明,热扩散镀层的硬度最大,而通过熔融锌热浸镀锌获得的镀层硬度最小。气热涂层和热扩散涂层的粗糙度 Ra 最大。通过热浸镀锌和电镀沉积获得的涂层的粗糙度最低。研究了所有类型涂层在指盘几何形状下的摩擦系数。结果表明,锌拉美拉涂层和热扩散涂层的摩擦系数最大,气热涂层和热浸镀锌涂层的摩擦系数最小。计算了 M3、M10 和 M16 螺栓的额定拧紧扭矩。已确定熔融锌热浸镀锌和气热喷涂涂层的拧紧扭矩符合 RD 37.001.131-89 的标准。对于其他涂层,摩擦系数需要通过使用润滑剂或涂抹其他涂层来调整。在为紧固件选择锌涂层时,可以使用这些结果。
Influence of Structure, Roughness, Microhardness, and Friction Coefficient of Zinc Coating on the Tightening Torque of a Threaded Connection
Samples of fasteners were studied: bolts, nuts, and washers with a zinc coating applied in various ways, namely galvanic, thermal diffusion, gas thermal, hot galvanization in molten zinc and in melt galfan (Zn + 5% Al), as well as with zinc lamellar coating. Data on roughness, microhardness, and friction coefficient of zinc coatings were obtained. It has been established that the thermal diffusion coating has the greatest hardness, and the coating obtained by hot-dip galvanizing in molten zinc has the least hardness. Maximum roughness Ra is observed in gas-thermal and thermal-diffusion coatings. The lowest roughness is found in coatings obtained by hot-dip galvanizing and galvanic deposition. The friction coefficients of coatings were studied in finger-disk geometry for all types of coatings. It has been established that zinc-lamella and thermal diffusion coatings have the highest coefficient of friction, and the lowest, gas-thermal coating and those obtained by hot-dip galvanizing. The nominal tightening torques for M3, M10, and M16 bolts are calculated. It has been established that the tightening torque of coatings applied by hot-dip galvanizing in molten zinc and gas-thermal spraying complies with the standards of RD 37.001.131–89. For other coatings, the friction coefficient requires adjustment through the use of lubricants or the application of additional coatings. The results can be used when choosing a zinc coating for fasteners.
期刊介绍:
Journal of Friction and Wear is intended to bring together researchers and practitioners working in tribology. It provides novel information on science, practice, and technology of lubrication, wear prevention, and friction control. Papers cover tribological problems of physics, chemistry, materials science, and mechanical engineering, discussing issues from a fundamental or technological point of view.