Konrad Schlichtholz, Tomasz Linowski, Mattia Walschaers, Nicolas Treps, Łukasz Rudnicki, and Giacomo Sorelli
{"title":"使用不完善的解复用器进行亚瑞利光源判别的实际测试","authors":"Konrad Schlichtholz, Tomasz Linowski, Mattia Walschaers, Nicolas Treps, Łukasz Rudnicki, and Giacomo Sorelli","doi":"10.1364/opticaq.502459","DOIUrl":null,"url":null,"abstract":"Quantum-optimal discrimination between one and two closely separated light sources can be theoretically achieved by ideal spatial-mode demultiplexing, simply monitoring whether a photon is detected in a single antisymmetric mode. However, we show that for any imperfections of the demultiplexer, no matter how small, this simple statistical test becomes practically useless. While we identify a class of separation-independent tests with vanishing error probabilities in the limit of large numbers of detected photons, they are generally unreliable beyond that very limit. As a practical alternative, we propose a simple semi-separation-independent test, which provides a method for designing reliable experiments, through arbitrary control over the maximal probability of error.","PeriodicalId":501828,"journal":{"name":"Optica Quantum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical tests for sub-Rayleigh source discriminations with imperfect demultiplexers\",\"authors\":\"Konrad Schlichtholz, Tomasz Linowski, Mattia Walschaers, Nicolas Treps, Łukasz Rudnicki, and Giacomo Sorelli\",\"doi\":\"10.1364/opticaq.502459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum-optimal discrimination between one and two closely separated light sources can be theoretically achieved by ideal spatial-mode demultiplexing, simply monitoring whether a photon is detected in a single antisymmetric mode. However, we show that for any imperfections of the demultiplexer, no matter how small, this simple statistical test becomes practically useless. While we identify a class of separation-independent tests with vanishing error probabilities in the limit of large numbers of detected photons, they are generally unreliable beyond that very limit. As a practical alternative, we propose a simple semi-separation-independent test, which provides a method for designing reliable experiments, through arbitrary control over the maximal probability of error.\",\"PeriodicalId\":501828,\"journal\":{\"name\":\"Optica Quantum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/opticaq.502459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/opticaq.502459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Practical tests for sub-Rayleigh source discriminations with imperfect demultiplexers
Quantum-optimal discrimination between one and two closely separated light sources can be theoretically achieved by ideal spatial-mode demultiplexing, simply monitoring whether a photon is detected in a single antisymmetric mode. However, we show that for any imperfections of the demultiplexer, no matter how small, this simple statistical test becomes practically useless. While we identify a class of separation-independent tests with vanishing error probabilities in the limit of large numbers of detected photons, they are generally unreliable beyond that very limit. As a practical alternative, we propose a simple semi-separation-independent test, which provides a method for designing reliable experiments, through arbitrary control over the maximal probability of error.