来自微生物的天然和工程木糖醇产品。

IF 4.8 3区 化学 Q1 CHEMISTRY, MEDICINAL Natural Products and Bioprospecting Pub Date : 2024-02-01 DOI:10.1007/s13659-024-00435-1
Jianzhao Qi, Shi-jie Kang, Ling Zhao, Jin‑ming Gao, Chengwei Liu
{"title":"来自微生物的天然和工程木糖醇产品。","authors":"Jianzhao Qi,&nbsp;Shi-jie Kang,&nbsp;Ling Zhao,&nbsp;Jin‑ming Gao,&nbsp;Chengwei Liu","doi":"10.1007/s13659-024-00435-1","DOIUrl":null,"url":null,"abstract":"<div><p>Glycosylation is a prevalent post-modification found in natural products and has a significant impact on the structural diversity and activity variation of natural products. Glucosylation is the most common type of glycosylation, whereas xylosylation is relatively rare. Despite their unique chemical structures and beneficial activities, xylosylated natural products from microorganisms have received little attention. This review provides, for the first time, a comprehensive summary of 126 microbial-derived xylosylated natural products, including xylosyl-cyathane diterpenes, xylosylated triterpenes, xylosyl aromatic compounds, and others. Among these compounds, xylosyl-cyathane diterpenes represent the highest number of derivatives, followed by xylosylated triterpenes. Xylosyl compounds from bacterial sources have less defined structural profiles compared to those from fungi. The characterization of xylosyltransferase EriJ from Basidiomycota extended the structural diversity of xylosyl cyathane diterpenes. This work provides a valuable reference for the research and use of xylosyltransferase for drug discovery and synthetic chemistry. Further work is needed to explore the potential applications of microbial derived xylosyl compounds and to develop novel xylosyl transferases. With the deepening of genomic sequencing of medicinal fungi, more biosynthesis of bioactive xylosyl compounds is expected to be elucidated in the future.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":718,"journal":{"name":"Natural Products and Bioprospecting","volume":"14 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830979/pdf/","citationCount":"0","resultStr":"{\"title\":\"Natural and engineered xylosyl products from microbial source\",\"authors\":\"Jianzhao Qi,&nbsp;Shi-jie Kang,&nbsp;Ling Zhao,&nbsp;Jin‑ming Gao,&nbsp;Chengwei Liu\",\"doi\":\"10.1007/s13659-024-00435-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Glycosylation is a prevalent post-modification found in natural products and has a significant impact on the structural diversity and activity variation of natural products. Glucosylation is the most common type of glycosylation, whereas xylosylation is relatively rare. Despite their unique chemical structures and beneficial activities, xylosylated natural products from microorganisms have received little attention. This review provides, for the first time, a comprehensive summary of 126 microbial-derived xylosylated natural products, including xylosyl-cyathane diterpenes, xylosylated triterpenes, xylosyl aromatic compounds, and others. Among these compounds, xylosyl-cyathane diterpenes represent the highest number of derivatives, followed by xylosylated triterpenes. Xylosyl compounds from bacterial sources have less defined structural profiles compared to those from fungi. The characterization of xylosyltransferase EriJ from Basidiomycota extended the structural diversity of xylosyl cyathane diterpenes. This work provides a valuable reference for the research and use of xylosyltransferase for drug discovery and synthetic chemistry. Further work is needed to explore the potential applications of microbial derived xylosyl compounds and to develop novel xylosyl transferases. With the deepening of genomic sequencing of medicinal fungi, more biosynthesis of bioactive xylosyl compounds is expected to be elucidated in the future.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":718,\"journal\":{\"name\":\"Natural Products and Bioprospecting\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830979/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Products and Bioprospecting\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13659-024-00435-1\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Products and Bioprospecting","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13659-024-00435-1","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

糖基化是天然产物中普遍存在的一种后修饰,对天然产物的结构多样性和活性变化具有重要影响。葡萄糖基化是最常见的糖基化类型,而木糖基化则相对罕见。尽管微生物中的木糖基化天然产物具有独特的化学结构和有益活性,但却很少受到关注。本综述首次全面总结了 126 种微生物衍生的木糖基化天然产物,包括木糖基-环烷二萜、木糖基化三萜、木糖基芳香化合物等。在这些化合物中,木糖基-环己烷二萜的衍生物数量最多,其次是木糖基化三萜。与来自真菌的木糖基化合物相比,来自细菌的木糖基化合物的结构轮廓不太清晰。对基生真菌的木糖基转移酶 EriJ 的鉴定扩展了木糖基环烷二萜的结构多样性。这项工作为研究和利用木糖基转移酶进行药物发现和合成化学提供了有价值的参考。探索微生物衍生的木糖基化合物的潜在应用和开发新型木糖基转移酶还需要进一步的工作。随着药用真菌基因组测序的深入,未来有望阐明更多具有生物活性的木糖基化合物的生物合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Natural and engineered xylosyl products from microbial source

Glycosylation is a prevalent post-modification found in natural products and has a significant impact on the structural diversity and activity variation of natural products. Glucosylation is the most common type of glycosylation, whereas xylosylation is relatively rare. Despite their unique chemical structures and beneficial activities, xylosylated natural products from microorganisms have received little attention. This review provides, for the first time, a comprehensive summary of 126 microbial-derived xylosylated natural products, including xylosyl-cyathane diterpenes, xylosylated triterpenes, xylosyl aromatic compounds, and others. Among these compounds, xylosyl-cyathane diterpenes represent the highest number of derivatives, followed by xylosylated triterpenes. Xylosyl compounds from bacterial sources have less defined structural profiles compared to those from fungi. The characterization of xylosyltransferase EriJ from Basidiomycota extended the structural diversity of xylosyl cyathane diterpenes. This work provides a valuable reference for the research and use of xylosyltransferase for drug discovery and synthetic chemistry. Further work is needed to explore the potential applications of microbial derived xylosyl compounds and to develop novel xylosyl transferases. With the deepening of genomic sequencing of medicinal fungi, more biosynthesis of bioactive xylosyl compounds is expected to be elucidated in the future.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Products and Bioprospecting
Natural Products and Bioprospecting CHEMISTRY, MEDICINAL-
CiteScore
8.30
自引率
2.10%
发文量
39
审稿时长
13 weeks
期刊介绍: Natural Products and Bioprospecting serves as an international forum for essential research on natural products and focuses on, but is not limited to, the following aspects: Natural products: isolation and structure elucidation Natural products: synthesis Biological evaluation of biologically active natural products Bioorganic and medicinal chemistry Biosynthesis and microbiological transformation Fermentation and plant tissue cultures Bioprospecting of natural products from natural resources All research articles published in this journal have undergone rigorous peer review. In addition to original research articles, Natural Products and Bioprospecting publishes reviews and short communications, aiming to rapidly disseminate the research results of timely interest, and comprehensive reviews of emerging topics in all the areas of natural products. It is also an open access journal, which provides free access to its articles to anyone, anywhere.
期刊最新文献
Newly isolated terpenoids (covering 2019–2024) from Aspergillus species and their potential for the discovery of novel antimicrobials Asprecosides A–J, ten new pentacyclic triterpenoid glycosides with cytotoxic activity from the roots of Ilex asprella Emestrin-type epipolythiodioxopiperazines from Aspergillus nidulans with cytotoxic activities by regulating PI3K/AKT and mitochondrial apoptotic pathways Advanced RPL19-TRAPKI-seq method reveals mechanism of action of bioactive compounds Structure–function insights of natural Ganoderma polysaccharides: advances in biosynthesis and functional food applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1