{"title":"中国景颇族人群中非常重要的药物基因变异情况及其潜在的临床意义:一项与全球人群的比较研究。","authors":"Xiaoya Ma, Yujie Li, Xufeng Zang, Jinping Guo, Wenqian Zhou, Junhui Han, Jing Liang, Panpan Wan, Hua Yang, Tianbo Jin","doi":"10.1007/s00280-023-04638-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pharmacogenomics is a facet of personalized medicine that explores how genetic variants affect drug metabolism and adverse drug reactions. Therefore, this study aims to detect distinct pharmacogenomic variations among the Jingpo population and explore their clinical correlation with drug metabolism and toxicity.</p><p><strong>Methods: </strong>Agena MassARRAY Assay was used to genotype 57 VIP variants in 28 genes from 159 unrelated Jingpo participants. Subsequently, the chi-squared test and Bonferroni's statistical tests were utilized to conduct a comparative analysis of genotypes and allele frequencies between the Jingpo population and the other 26 populations from the 1000 Genome Project.</p><p><strong>Results: </strong>We discovered that the KHV (Kinh in Ho ChiMinh City, Vietnam), CHS (Southern Han Chi-nese, China) and JPT (Japanese in Tokyo, Japan) exhibited the smallest differences from the Jingpo with only 4 variants, while ESN (Esan in Nigeria) exhibited the largest differences with 30 variants. Besides, a total of six considerably different loci (rs4291 in ACE, rs20417 in PTGS2, rs1801280 and rs1799929 in NAT2, rs2115819 in ALOX5, rs1065852 in CYP2D6, p < 3.37 × 10<sup>-5</sup>) were identified in this study. According to PharmGKB, rs20417 (PTGS2), rs4291 (ACE), rs2115819 (ALOX5) and rs1065852 (CYP2D6) were found to be associated with the metabolism efficiency of non-steroidal anti-inflammatory drugs (NSAIDs), aspirin, montelukast and tamoxifen, respectively. Meanwhile, rs1801280 and rs1799929 (NAT2) were found to be related to drug poisoning with slow acetylation.</p><p><strong>Conclusion: </strong>Our study unveils distinct pharmacogenomic variants in the Jingpo population and discovers their association with the metabolic efficiency of NSAIDs, montelukast, and tamoxifen.</p>","PeriodicalId":9556,"journal":{"name":"Cancer Chemotherapy and Pharmacology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The landscape of very important pharmacogenes variants and potential clinical relevance in the Chinese Jingpo population: a comparative study with worldwide populations.\",\"authors\":\"Xiaoya Ma, Yujie Li, Xufeng Zang, Jinping Guo, Wenqian Zhou, Junhui Han, Jing Liang, Panpan Wan, Hua Yang, Tianbo Jin\",\"doi\":\"10.1007/s00280-023-04638-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pharmacogenomics is a facet of personalized medicine that explores how genetic variants affect drug metabolism and adverse drug reactions. Therefore, this study aims to detect distinct pharmacogenomic variations among the Jingpo population and explore their clinical correlation with drug metabolism and toxicity.</p><p><strong>Methods: </strong>Agena MassARRAY Assay was used to genotype 57 VIP variants in 28 genes from 159 unrelated Jingpo participants. Subsequently, the chi-squared test and Bonferroni's statistical tests were utilized to conduct a comparative analysis of genotypes and allele frequencies between the Jingpo population and the other 26 populations from the 1000 Genome Project.</p><p><strong>Results: </strong>We discovered that the KHV (Kinh in Ho ChiMinh City, Vietnam), CHS (Southern Han Chi-nese, China) and JPT (Japanese in Tokyo, Japan) exhibited the smallest differences from the Jingpo with only 4 variants, while ESN (Esan in Nigeria) exhibited the largest differences with 30 variants. Besides, a total of six considerably different loci (rs4291 in ACE, rs20417 in PTGS2, rs1801280 and rs1799929 in NAT2, rs2115819 in ALOX5, rs1065852 in CYP2D6, p < 3.37 × 10<sup>-5</sup>) were identified in this study. According to PharmGKB, rs20417 (PTGS2), rs4291 (ACE), rs2115819 (ALOX5) and rs1065852 (CYP2D6) were found to be associated with the metabolism efficiency of non-steroidal anti-inflammatory drugs (NSAIDs), aspirin, montelukast and tamoxifen, respectively. Meanwhile, rs1801280 and rs1799929 (NAT2) were found to be related to drug poisoning with slow acetylation.</p><p><strong>Conclusion: </strong>Our study unveils distinct pharmacogenomic variants in the Jingpo population and discovers their association with the metabolic efficiency of NSAIDs, montelukast, and tamoxifen.</p>\",\"PeriodicalId\":9556,\"journal\":{\"name\":\"Cancer Chemotherapy and Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Chemotherapy and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00280-023-04638-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Chemotherapy and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00280-023-04638-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
The landscape of very important pharmacogenes variants and potential clinical relevance in the Chinese Jingpo population: a comparative study with worldwide populations.
Background: Pharmacogenomics is a facet of personalized medicine that explores how genetic variants affect drug metabolism and adverse drug reactions. Therefore, this study aims to detect distinct pharmacogenomic variations among the Jingpo population and explore their clinical correlation with drug metabolism and toxicity.
Methods: Agena MassARRAY Assay was used to genotype 57 VIP variants in 28 genes from 159 unrelated Jingpo participants. Subsequently, the chi-squared test and Bonferroni's statistical tests were utilized to conduct a comparative analysis of genotypes and allele frequencies between the Jingpo population and the other 26 populations from the 1000 Genome Project.
Results: We discovered that the KHV (Kinh in Ho ChiMinh City, Vietnam), CHS (Southern Han Chi-nese, China) and JPT (Japanese in Tokyo, Japan) exhibited the smallest differences from the Jingpo with only 4 variants, while ESN (Esan in Nigeria) exhibited the largest differences with 30 variants. Besides, a total of six considerably different loci (rs4291 in ACE, rs20417 in PTGS2, rs1801280 and rs1799929 in NAT2, rs2115819 in ALOX5, rs1065852 in CYP2D6, p < 3.37 × 10-5) were identified in this study. According to PharmGKB, rs20417 (PTGS2), rs4291 (ACE), rs2115819 (ALOX5) and rs1065852 (CYP2D6) were found to be associated with the metabolism efficiency of non-steroidal anti-inflammatory drugs (NSAIDs), aspirin, montelukast and tamoxifen, respectively. Meanwhile, rs1801280 and rs1799929 (NAT2) were found to be related to drug poisoning with slow acetylation.
Conclusion: Our study unveils distinct pharmacogenomic variants in the Jingpo population and discovers their association with the metabolic efficiency of NSAIDs, montelukast, and tamoxifen.
期刊介绍:
Addressing a wide range of pharmacologic and oncologic concerns on both experimental and clinical levels, Cancer Chemotherapy and Pharmacology is an eminent journal in the field. The primary focus in this rapid publication medium is on new anticancer agents, their experimental screening, preclinical toxicology and pharmacology, single and combined drug administration modalities, and clinical phase I, II and III trials. It is essential reading for pharmacologists and oncologists giving results recorded in the following areas: clinical toxicology, pharmacokinetics, pharmacodynamics, drug interactions, and indications for chemotherapy in cancer treatment strategy.