Johana I Luzzi, Virginia C Aparicio, Eduardo De Geronimo, Alejandra Ledda, Veronica M Sauer, José L Costa
{"title":"阿特拉津、草甘膦和 2,4-D 在阿根廷西南查科两种截然不同的轮作土壤中的降解情况。","authors":"Johana I Luzzi, Virginia C Aparicio, Eduardo De Geronimo, Alejandra Ledda, Veronica M Sauer, José L Costa","doi":"10.1080/03601234.2024.2305596","DOIUrl":null,"url":null,"abstract":"<p><p>Argentina stands as one of the leading consumers of herbicides. In a laboratory incubation experiment, the persistence and production of degradation metabolites of Atrazine, 2,4-D, and Glyphosate were investigated in a loamy clay soil under two contrasting agricultural practices: continuous soybean cultivation (T1) and intensified rotations with grasses and legumes (T2). The soils were collected from a long-term no-till trial replicating the influence of the meteorological conditions in the productive region. The soil was enriched with diluted concentrations of 6.71, 9.95, and 24 mg a.i./kg-1 of soil for the respective herbicides, equivalent to annual doses commonly used in the productive region. Samples were taken at intervals of 0, 0.5, 1, 2, 4, 6, 8, 16, 32, and 64 days, and analysis was conducted using high-resolution liquid chromatography UPLC MS/MS. An optimal fit to the first-order kinetic model was observed for each herbicide in both rotations, resulting in relatively short half-lives. Intensified crop sequences favored the production of biotic degradation metabolites. The impact of the high frequency of soybean cultivation revealed a trend of soil acidification and a reduced biological contribution to attenuation processes in soil contamination.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":" ","pages":"98-111"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation of atrazine, glyphosate, and 2,4-D in soils collected from two contrasting crop rotations in Southwest Chaco, Argentina.\",\"authors\":\"Johana I Luzzi, Virginia C Aparicio, Eduardo De Geronimo, Alejandra Ledda, Veronica M Sauer, José L Costa\",\"doi\":\"10.1080/03601234.2024.2305596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Argentina stands as one of the leading consumers of herbicides. In a laboratory incubation experiment, the persistence and production of degradation metabolites of Atrazine, 2,4-D, and Glyphosate were investigated in a loamy clay soil under two contrasting agricultural practices: continuous soybean cultivation (T1) and intensified rotations with grasses and legumes (T2). The soils were collected from a long-term no-till trial replicating the influence of the meteorological conditions in the productive region. The soil was enriched with diluted concentrations of 6.71, 9.95, and 24 mg a.i./kg-1 of soil for the respective herbicides, equivalent to annual doses commonly used in the productive region. Samples were taken at intervals of 0, 0.5, 1, 2, 4, 6, 8, 16, 32, and 64 days, and analysis was conducted using high-resolution liquid chromatography UPLC MS/MS. An optimal fit to the first-order kinetic model was observed for each herbicide in both rotations, resulting in relatively short half-lives. Intensified crop sequences favored the production of biotic degradation metabolites. The impact of the high frequency of soybean cultivation revealed a trend of soil acidification and a reduced biological contribution to attenuation processes in soil contamination.</p>\",\"PeriodicalId\":15720,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"volume\":\" \",\"pages\":\"98-111\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/03601234.2024.2305596\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03601234.2024.2305596","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Degradation of atrazine, glyphosate, and 2,4-D in soils collected from two contrasting crop rotations in Southwest Chaco, Argentina.
Argentina stands as one of the leading consumers of herbicides. In a laboratory incubation experiment, the persistence and production of degradation metabolites of Atrazine, 2,4-D, and Glyphosate were investigated in a loamy clay soil under two contrasting agricultural practices: continuous soybean cultivation (T1) and intensified rotations with grasses and legumes (T2). The soils were collected from a long-term no-till trial replicating the influence of the meteorological conditions in the productive region. The soil was enriched with diluted concentrations of 6.71, 9.95, and 24 mg a.i./kg-1 of soil for the respective herbicides, equivalent to annual doses commonly used in the productive region. Samples were taken at intervals of 0, 0.5, 1, 2, 4, 6, 8, 16, 32, and 64 days, and analysis was conducted using high-resolution liquid chromatography UPLC MS/MS. An optimal fit to the first-order kinetic model was observed for each herbicide in both rotations, resulting in relatively short half-lives. Intensified crop sequences favored the production of biotic degradation metabolites. The impact of the high frequency of soybean cultivation revealed a trend of soil acidification and a reduced biological contribution to attenuation processes in soil contamination.